Advertisement

Free radicals, lipid peroxidation, SOD activity, neurotransmitters and choline acetyltransferase activity in the aged rat brain

  • M. Hiramatsu
  • R. Edamatsu
  • A. Mori
Part of the EXS book series (EXS, volume 62)

Summary

The mechanism of aging is suggested to be related to oxygen free radicals. Free radicals, lipid peroxidation and SOD activity have been reported to be increased in the aged brain. A Japanese herbal medicine, Sho-saiko-to-go-keishi-ka-shakuyaku-to (TJ-960), which has scavenging activities against hydroxyl radicals, superoxide, l,l-diphenyl-2-picrylhydrazyl radicals, carbon-centered radicals and alpha-tocopheroxyl radicals, decreased carbon-centered radicals and thiobarbituric acid reactive substances (TBARS) levels in the aged rat brain after a 3-week oral administration of 5% TJ-960 solution. TJ-960 elevated superoxide dismutase (SOD) activity in the cytosol fraction of the hippocampus and hypothalamus of aged rats. It decreased norepinephrine and 5-hydroxytryptamine (5-HT) levels in the hypothalamus and increased the 5-HT level in the cerebellum. TJ-960 treatment increased choline acetyltransferase activity in aged rats. As herbal medicines do not generally have harmful side effects, antioxidant TJ-960 appears to be a suitable prophylactic agent against some neuronal symptoms of aging.

Keywords

Down Syndrome Human Cerebrospinal Fluid Japanese Herbal Medicine Spin Trap Method Choline Acetyltrans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, S., Benton, J. S., Goodhardt, M. J., Haan, E. A., Sims, N. R., Smith, C. C. T., Spillane, J. A., Bowen, D. M., and Davison, A. N. (1983) Biochemical evidence of selective nerve cell changes in the normal ageing human and rat brain. J Neurochem. 41: 256–265.PubMedCrossRefGoogle Scholar
  2. Cutler, R. G. (1991) Antioxidants and aging. Am. J. Clin. Nutr. 53: 373s-379s.PubMedGoogle Scholar
  3. Cross, A. J., Crow, T. J., Perry, E. K., Perry, R. H., Blessed, G., and Tomlinson, B. E. (1981) Reduced dopamine-beta-hydroxylase activity in Alzheimer’s disease. Br. Med. J. 282: 93–94.CrossRefGoogle Scholar
  4. Danh, H. C., Benedetti, M. S., and Dostert, P. (1983) Differential changes in superoxide dismutase activity in brain and liver of old rats and mice. J. Neurochem. 40: 1003–1007.PubMedCrossRefGoogle Scholar
  5. De Quiroga, G. B., Perez-Campo, R., and Lopezz Torres, M. (1990) Anti-oxidant defences and peroxidation in liver and brain of aged rats. Biochem. J. 272: 247–250.Google Scholar
  6. Estes, K. S., and Simpkins, J. W. (1980) Age-related alterations in catecholamine concentrations in discrete preoptic area and hypothalamic regions in the male rat. Brain Res. 194: 556–560.PubMedCrossRefGoogle Scholar
  7. Estes, K. S., and Simpkins, J. W. (1984) Age-related alterations in dopamine and norepinephrine activity within microdissected brain regions of ovariecotomized long evans rats. Brain Res. 298: 209–218.PubMedCrossRefGoogle Scholar
  8. Fonnum, F. (1974) A rapid radiochemical method for the determination of choline acetyltransferase. J. Neurochem. 24: 407–409.CrossRefGoogle Scholar
  9. Fujita, K., Maruta, K., Teradaira, R., Beppu, H., Ikegame, M., and Kawai, K. (1982) Dopamine beta-hydroxylase activity in human cerebrospinal fluid from various age groups. Clin. Chem. 28: 1403–1404.PubMedGoogle Scholar
  10. Geremia, E., Baratta, S. D., Zafarana, S., Giodarno, R., Pinizzotto, M. R., La Rossa, M. D. G., and Garozzo, A. (1990) Antioxidant enzymatic systems in neuronal and glial cell-enriched fractions of rat brain during aging. Neurochem. Res. 15: 719–723.PubMedCrossRefGoogle Scholar
  11. Gottfries, C. G., Adolfsson, R., Aquilonius, S. M., Carlsson, A., Eckernas, S. A., Nordberg, A., Oreland, L., Svennerholm, L., Wiberg, A., and Winblad, B. (1983) Biochemical changes in dementia disorders of Alzheimer type (AD/SDAT). Neurobiolog. Aging 4: 261–271.CrossRefGoogle Scholar
  12. Hardy, J., Adolfsson, R., Alafusoif, I., Bucht, G., Marcusson, J., Nyberg, P., Pedrahl, E., Wester, P., and Winblad, B. (1985) Transmitter deficits in Alzheimer’s disease. Neurochem. Int., 7: 545–563.PubMedCrossRefGoogle Scholar
  13. Haba, K., Ogawa, N., Kawata, M., and Mori, A. (1988) A method for parallel determination of choline acetyltransferase and muscarinic cholinergic receptors: Application in aged-rat brain. Neurochem. Res. 13: 951–955.PubMedCrossRefGoogle Scholar
  14. Hiramatsu, M., Edamatsu, R., Kabuto, H., and Mori, A. (1988a) Effect of Sho-saiko-to-go- keishi-ka-shakuyaku-to (TJ-960) on monoamines, amino acids, lipid peroxides, and superoxide dismutase in brains of aged rats in: Recent Advances in the Pharmacology of KAMPO (Japanese herbal medicines) (E. Hosoya and Y. Yamamura, Eds). Excerpta Medica, pp. 128–135.Google Scholar
  15. Hiramatsu, M., Edamatsu, R., Kohno, M., and Mori, A. (1988b) Scavenging of free radicals by Sho-saiko-to-go-keishi-ka-shalcuyaku-to (TJ-960) in: Recent Advances in the Pharmacology of KAMPO (Japanese herbal medicines) (E. Hosoya and Y. Yamamura, Eds). Excerpta Medica, pp. 120–127.Google Scholar
  16. Hiramatsu, M., Haba, K., Edamatsu, R., Hamada, H., and Mori, A. (1989) Increased chohne acetyltransferase activity by Chinese herbal medicine Sho-saiko-to-go-keishi-ka-shakuyaku- to in aged rat brain. Neurochem. Res. 14: 249–251.PubMedCrossRefGoogle Scholar
  17. Hiramatsu, M., Kabuto, H., and Mori, A. (1986) Effects of shosaiko-to-go-keishi-ka- shakuyaku-to (TJ-960) on brain catecholamine level of aged rats. IRCS Med. Sci. 14: 189–190.Google Scholar
  18. Hiramatsu, M., Kabuto, H., and Mori, A. (1988c) Effects of Sho-saiko-to-go-keishi-ka- shakuyaku-to (TJ-960) on convulsions and brain 5-hydroxytryptamine in El mice, in: Recent Advances in the Pharmacology of KAMPO (Japanese herbal medicines) E. Hosoya and Y. Yamamura, Eds. Excerpta Medica, pp. 69–73.Google Scholar
  19. Hiramatsu, M., and Kohno, M. (1987) Determination of superoxide activity by electron spin resonance spectrometry using the spin trap method. JEOL News 23A: 7.Google Scholar
  20. Hiramatsu, M., Kohno, M., Edamatsu, R., and Mori, A. (1992) Increased superoxide dismutase activity in aged human cerebrospinal fluid and rat brain by electron spin resonance spectrometry using the spin trap method. J. Neurochem. 58: 1160–1164.PubMedCrossRefGoogle Scholar
  21. Hiramatsu, M., Velasco, R. D., and Packer, L. (1990) Vitamin E radical reaction with antioxidants in rat liver membranes. Free Rad. Biol. Med. 9: 459–464.Google Scholar
  22. Hischorrn, I. D., Marman, M. H., and Sharpless, N. S. (1982) Dopamine receptor sensitivity following nigrostriatal lesion in the aged rat. Brain Res. 234: 357–368.CrossRefGoogle Scholar
  23. Kellogg, E. W., and Fridovich, I. (1976) Superoxide dismutase in the rat and mouse as a function of age and longevity. J. Gerontol. 31: 405–408.PubMedGoogle Scholar
  24. Maveli, I., Mondovi, B., Federico, R., and Rotiho, G. (1978) Superoxide dismutase activity in developing rat brain. J. Neurochem. 31: 363–364.CrossRefGoogle Scholar
  25. Osterburg, H. H., Donahue, H. G., Severson, J. A., and Finch, C. E. (1981) Catecholamine levels and turnover during aging in brain regions of male C57BL/6J mice. Brain Res. 224: 337–352.PubMedCrossRefGoogle Scholar
  26. Perry, E. K., Blessed, G., Tomlinson, B. E., Perry, R. H., Crow, T. J., Cross, A. J., Dockray, G. J., Dimahne, R., and Arregui, A. (1981) Neurochemical activities in human temporal lobe related to aging and Alzheimer-type changes. Neurobiol. Aging 2: 251–256.PubMedCrossRefGoogle Scholar
  27. Sawada, M., and Carlson, J. C. (1987) Changes in superoxide radical and hpid peroxide formation in the brain, heart and hver during the hfetime of the rat. Mech. Aging Dev. 41: 125–137.PubMedCrossRefGoogle Scholar
  28. Simpkins, J. W., Mueller, G. P., Huang, H. H., and Meites, J. (1977) Evidence for depressed catecholamine and enhanced sereotonin metabolism in aging male rats: possible relation to gonadotropin secretion. Endocrinology 100: 1672–1678.PubMedCrossRefGoogle Scholar
  29. Sims, N. R., Marek, K. L., Bowen, D. M., and Davison, A. N. (1982) Production of [14C] acetylcholine and [14C]carbon dioxide from [U-14C]glucose in tissue prisms from aging rat brain. J. Neurochem. 38: 488–492.PubMedCrossRefGoogle Scholar
  30. Sugaya, E., Ishige, A., Sekiguchi, K., lizuka, S., Sugimoto, A., Yuzurihara, M., and Hosoya, E. (1988) Inhibitory effect of mixture of herbal drugs (TJ-960, SK) on pentylenetetrazol-in- duced convulsions in El mice. Epilepsy Res. 2: 337–339.PubMedCrossRefGoogle Scholar
  31. Yates, C. M., Ritchie, I. M., Simpson, J., Maloney, A. F. J., and Gordon, A. (1981) Noradrenaline in Alzheimer-type dementia and Down syndrome. Lancet ii: 39–40.CrossRefGoogle Scholar
  32. Yates, C. M., Simpson, J., Gordon, A., Maloney, A. F. J., Alhson, Y., Ritchie, I. M., and Urquhart, A. (1983) Catecholamines and cholinergic enzymes in pre-senile and senile Alzheimer-type dementia and Down’s syndrome. Brain Res. 280: 119–126.PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1992

Authors and Affiliations

  • M. Hiramatsu
    • 1
  • R. Edamatsu
    • 2
  • A. Mori
    • 2
  1. 1.Yamagata Technopolis FoundationYamagata 990Japan
  2. 2.Department of Neuroscience, Institute of Molecular and Cellular MedicineOkayama University Medical SchoolOkayama 700Japan

Personalised recommendations