Skip to main content

Potential Role of Protein Oxidation and Proteasome in Antigen Processing

  • Chapter
Oxidative Stress, Cell Activation and Viral Infection

Part of the book series: Molecular and Cell Biology Updates ((MCBU))

  • 100 Accesses

Summary

The hypothesis is presented that in antigen presenting cells, normal background rates of protein oxidation may supply endogenous protein substrates for the 19S proteasome proteolytic complex. Certain antigen presenting cells, such as macrophages, may actually use an oxidative burst to “mark” endogenous cytoplasmic proteins for partial degradation by the 19S proteasome. Proteasome seems to be able to generate peptides of approximately nine amino acids in length, which can combine with major histocompatibility complex (MHC) class I molecules and β2-microglobulin. Such MHC class I antigen complexes next appear to migrate through the endoplasmic reticulum and the Golgi apparatus, assisted by specific ABC (ATP-binding cassette) superfamily transporter proteins, to the cell surface. Thus antigen presenting cells may use oxidative marking (either from background protein oxidation, or through an oxidative burst) of precursor self-antigens to direct cell surface class I presentation for surveillance by CD8+T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, D., Driscoll, J., Androlewicz, M., Hughes, E., Cresswell, P., and Spies, T. (1992) Proteosome subunits encoded in the MHC are not generally required for the processing of peptides bound by MHC class I molecules. Nature 360: 171–173.

    Article  PubMed  CAS  Google Scholar 

  • Arrigo, A., Tanaka, K., Goldberg, A.L. and Welch, W.J. (1988) Identity of the 19S ‘prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature 331: 192–194.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M.G., Driscoll, J., and Monaco, J.J. (1991) Structural and serological similarity of MHC-linked LMP and proteasome (Multicatalytic proteinase) complexes. Nature 353: 355357.

    Google Scholar 

  • Davies, K.J.A.. (1985) Free radicals and protein degradation in human red blood cells. In Cellular and molecular aspects of aging: the red cell as a model. ( Eaton, Konzen, and White, eds.) Liss, NY, pp. 15–27

    Google Scholar 

  • Davies, K.J.A. (1988) Protein oxidation, protein cross-linking, and proteolysis in the formation of lipofuscin. In Lipofuscin-1987: State of the art. (Nagy, ed.) Elsevier, Amsterdam, pp. 109–133.

    Google Scholar 

  • Davies, K.J.A. (1986) Intracellular proteolytic systems may function as secondary antioxidant defenses: A hypothesis. J. Free Radicals Biol. Med. 2: 155–173.

    Article  CAS  Google Scholar 

  • Davies, K.J.A. (1987) Protein damage and degradation by oxygen radicals. I. General aspects. J. Biol. Chem. 262: 9895–9901.

    PubMed  CAS  Google Scholar 

  • Davies, K.J.A., and Delsignore, M.E. (1987) Protein damage and degradation by oxygen radicals. III. Secondary and tertiary structure. J. Biol. Chem.. 262: 9908–9913.

    PubMed  CAS  Google Scholar 

  • Davies, K.J.A., and Goldberg, A.L. (1987a) Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanisms in erythrocytes. J. Biol. Chem. 262: 8220–8226.

    PubMed  CAS  Google Scholar 

  • Davies, K.J.A., and Goldberg, A.L. (1987b) Proteins damaged by oxygen radicals are rapidly degreaded in extracts of red blood cells. J. Biol. Chem. 262: 8227–8234.

    PubMed  CAS  Google Scholar 

  • Davies, K.J.A., Delsignore, M.E., and Lin, S.W. (1987a) Protein damage and degradation by oxygen radicals. II Primary structure. J. Biol. Chem. 262: 9902–9907.

    PubMed  CAS  Google Scholar 

  • Davies, K.J.A., Lin, S.W., and Pacifici, R.E. (1987b) Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein. J. Biol. Chem. 262: 9914–9920.

    PubMed  CAS  Google Scholar 

  • Davies, K.J.A., and Lin, S.W. (1988a) Degradation of oxidatively denatured protein in Escherichia coli. Free Radicals Biol. Med. 5: 215–223.

    CAS  Google Scholar 

  • Davies, K.J.A., and Lin, S.W. (1988b) Oxidatively denatured proteins are degraded by an ATP-independent pathway in Escherichia coli. Free Radicals Biol. Med. 5: 225–236.

    CAS  Google Scholar 

  • Deverson, E.V., Gow, I.R., Coadwell, W.J., Monaco, J.J., Butcher, G.W., and Howard, J.C. (1990) MHC class II region encoding proteins related to the multidrug resistance family of transmembrane transporters. Nature 348: 738–741.

    Article  PubMed  CAS  Google Scholar 

  • Faustman, D., Li, X, Lin, H.Y., Fu, Y., Eisenbarth, G., Avruch, J., and Guo, J. (1991) Linkage of faulty major histocompatibility complex class Ito autoimmune diabetes. Science 25: 1756–1761.

    Article  Google Scholar 

  • Fucci, L., Oliver, C.M., Coon, M.J., and Stadtman, E.R. (1983) Inactivation of key metabolic enzymes by mixed-function oxidation reactions: Possible implication in protein turnover and aging. Proc. Natl. Acad. Sci. USA 80: 1521–1525.

    Article  PubMed  CAS  Google Scholar 

  • Glynne, R., Powis, S.H., Beck, S., Kelly, A., Kerr, L.-A., and Trowsdale, J. (1991) A proteasome-related gene between the two ABC transporter loci in the class II region of the human MHC. Nature 353: 357–360.

    Article  PubMed  CAS  Google Scholar 

  • Hackett, C.J. (1991) Later for the rendezvous. Nature 349: 655–656.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, R.A., Michel, H. Sakaguchi, K., Shabanowitz, J., Appella, E., Hunt, D.F., and Engelhard, V.H. (1992) HLA-A2.1-Associated peptides from a mutant cell line: A second pathway of antigen presentation. Science 255: 1264–1266.

    CAS  Google Scholar 

  • Hunt, D.F., Henderson, R.A., Shabanoxwtz, J., Sakaguchi, K., Michel, H., Sevilir, N., Cox, A.L., Appella, E., and Engelhard, V.H. (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectometry. Science 255: 1261–1263.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, A., Powis, S.H., Glynne, R., Radley, E., Beck, S., and Trowsdale, J. (1991) Second proteasome-related gene in the human MHC class II region. Nature 353: 667–668.

    Article  PubMed  CAS  Google Scholar 

  • Levine, R.L., Oliver, C.N., Fulks, R.M., and Stadtman, E.R. (1981) Turnover of bacterial glutamine synthetase: Oxidative inactivation precedes proteolysis. Proc. Natl. Acad. Sci. USA 78: 2120–2124.

    Article  PubMed  CAS  Google Scholar 

  • Marcillat, O., Zhang, Y., Lin, S.W., and Davies, K.J.A. (1988) Mitochondria contain a proteolytic system which can recognize and degrade oxidatively denatured proteins. Biochem. J. 254: 677–683.

    PubMed  CAS  Google Scholar 

  • Martinez, C.K., and Monaco, J.J. (1991) Homology of proteasome subunits to a major histocompatibility complex-linked LMP gene. Nature 353: 664–667.

    Article  PubMed  CAS  Google Scholar 

  • Momburg, F., Ortiz-Navarrete, V., Neefjes, J., Goulmy, E., van de Wal, Y., Spits, H., Powis, S.J., Butcher, G.W., Howard, J.C., Walden, P., and Hämmerling, G.J. (1992) Proteasome subunits encoded by the major histocompatibility complex are not essential for antigen presentation. Nature 360: 174–177.

    Article  PubMed  CAS  Google Scholar 

  • Monaco, J.J., and McDevitt, H.O. (1982) Identification of a 4th class of proteins linked to the mutine major histocomparibility complex. Proc. Natl. Acad. Sci. USA 79: 3001–3005.

    Article  PubMed  CAS  Google Scholar 

  • Monaco, J.J., and McDevitt, H.O. (1986) The LMP antigens; A stable MHC-controlled multisubunit protein complex. Hum. Immun. 15: 416–426.

    Google Scholar 

  • Monaco, J.J., Cho, S., and Attaya, M. (1990) Transport protein genes in the murine MHC: possible implications for antigen processing. Science 250: 1723–1726.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, K., Jahngen, J.H., Lin, S.W., Davies, K.J.A., and Taylor, A. (1990) Lens proteasome shows enhanced rates of degradation of hydroxyl radical modified alpha-crystallin. Free Radical Biol. Med. 8: 217–222.

    Article  CAS  Google Scholar 

  • Ortiz-Navarrete, V., Seelig, A., Gernold, M., Frentzel, S., Kloetzel, P.M., and Hämmerling, G.J. (1991) Subunit of the ‘20S’ proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex. Nature 353: 662–664.

    Article  PubMed  CAS  Google Scholar 

  • Pacifici, R.E., and Davies, K.J.A. (1987) The measurement of protein degradation in response to oxidative stress. In Oxygen radicals in biology and medicine: basic life sciences. Int. Congr. on Oxygen Radicals, LaJolla, Plenum, New York, pp. 531–535.

    Google Scholar 

  • Pacifici, R.E., and Davies, K.J.A. (1990) Protein degradation as an index of oxidative stress. Meth. Enzymol. 186: 485–502.

    Article  PubMed  CAS  Google Scholar 

  • Pacifici, R.E., Salo, D.C., and Davies, K.J.A. (1989) Macroxyproteinase (MOP): A 670 kDa proteinase complex that degrades oxidatively denatured proteins in red blood cells. Free Radical Biol. Med. 7: 521–536.

    Article  CAS  Google Scholar 

  • Parnham, P. (1990) Transporters of delight. Nature 348: 674–675.

    Article  Google Scholar 

  • Rivett, A.J. (1985) Purification of a liver alkaline protease which degrades oxidatively modified glutamine synthetase: Characterization as a high molecular weight cysteine protease. J. Biol. Chem. 260: 12600–12606.

    PubMed  CAS  Google Scholar 

  • Rivett, A.J. (1989) The multicatalytic proteinase of mammalian cells. Arch Biochem. Biophys. 268: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, M. (1991) Proteasomes in the pathway. Nature 353: 300–301.

    Article  PubMed  CAS  Google Scholar 

  • Salo, D.C., Lin, S.W., Pacifici, R.E., and Davies, K.J.A. (1988) Superoxide dismutase is preferentially degraded by a proteolytic system from red blood cells following oxidative modification by hydrogen peroxide. Free Radical Biol. Med. 5: 335–339.

    Article  CAS  Google Scholar 

  • Salo, D.C., Pacifici, R.E., Lin, S.W., Giulivi, C., and Davies, K.J.A. (1990) Superoxide dismutase undergoes proteolysis and fragmentation following oxidative modification and inactivation. J. Biol. Chem. 265: 11919–11927.

    PubMed  CAS  Google Scholar 

  • Spies, T., and DeMars, R. (1991) Restored expression of major histocompatibility class I molecules by gene transfer of a putative peptide transporter. Nature 351: 323–324.

    Article  PubMed  CAS  Google Scholar 

  • Spies, T., Bresnahan, M., Bahram, S., Arnold, D., Blanck, G., Mellins, E., Pious, D., and DeMars, R. (1990) A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway. Nature 348: 744–747.

    Article  PubMed  CAS  Google Scholar 

  • Stadtman, E.R. (1986) Oxidation of proteins by mixed-function oxidation system: Implication in protein turnover, ageing and neutrophil function. TIBS 11: 11–12.

    CAS  Google Scholar 

  • Taylor, A., and Davies, K.J.A. (1987) Protein oxidation and loss of protease activity may lead to cataract formation in the aged lens. Free Radical Biol. Med. 3: 371–377.

    Article  CAS  Google Scholar 

  • Trowsdale, J., Hanso, I., Mockridge, I., Beck, S., Townsend, A., and Kelly, A. (1990) Sequences encoded in the class II region of the MHC related to the ‘ABC superfamily of transporters. Nature 348: 741–744.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, S.P. and Dean, R.T. (1986) Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymatic hydrolysis. Biochem. J. 234: 399–403.

    PubMed  CAS  Google Scholar 

  • Wolff, S.P., Garner, A., and Dean, R.T. (1986) Free radicals, lipids, and protein degradation. TIBS 11: 27–31.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Davies, K.J.A. (1994). Potential Role of Protein Oxidation and Proteasome in Antigen Processing. In: Pasquier, C., Olivier, R.Y., Auclair, C., Packer, L. (eds) Oxidative Stress, Cell Activation and Viral Infection. Molecular and Cell Biology Updates. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7424-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7424-3_2

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7426-7

  • Online ISBN: 978-3-0348-7424-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics