Skip to main content

The Antioxidant Effects of Glutathione and Ascorbic Acid

  • Chapter
Oxidative Stress, Cell Activation and Viral Infection

Part of the book series: Molecular and Cell Biology Updates ((MCBU))

Summary

The functions of glutathione have been explored by use of a model animal system in which the cellular synthesis of glutathione is inhibited. Glutathione deficiency, induced by administration of buthionine sulfoximine (an inhibitor of the first step of glutathione synthesis) leads to mortality in newborn rats and in guinea pigs, animals that are unable to synthesize ascorbic acid, and to tissue damage in these animals and in adult mice, which can synthesize ascorbic acid. Mortality and morbidity are greatly diminished by administration of glutathione esters or of ascorbic acid. These and other findings indicate that cellular glutathione is essential for the physiological function of ascorbic acid, that ascorbic acid can spare glutathione, and that glutathione (supplied as an ester) can spare ascorbic acid. Recent studies showed that administration of glutathione (in an ester form) to guinea pigs fed an ascorbatedeficient diet significantly delays the onset of scurvy, a disease in which oxidative stress leads to inactivation of certain enzymes that catalyze hydroxylation reactions. The present findings demonstrate that ascorbic acid and glutathione function together as an antioxidant couple. Since there is good evidence that glutathione and/or ascorbic acid function in maintaining the reduced forms of other cellular components, such as α-tocopherol, it appears that glutathione is the source of a major portion of cellular antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alcain, F.J., Buron, M.I., Villalba, J.M., and Navas, P. (1991) Ascorbate is regenerated by HL-60 cells through the transplasmalemma redox system. Biochim. Biophys. Acta 1073: 380–385.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, M.E., and Meister, A. (1989) Glutathione monoesters. Anal. Biochem. 183: 16–20.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, M.E., Powrie, F., Puri, R.N., and Meister, A. (1985) Glutathione monoethyl ester: Preparation, uptake by tissues, and conversion to glutathione. Arch. Biochem. Biophys. 239: 538–548.

    Article  PubMed  CAS  Google Scholar 

  • Bigley, R., Riddle, M., Layman, D., and Stankova, L. (1981) Human cell dehydroascorbate reductase kinetic and functional properties. Biochim. Biophys. Acta 659: 15–22.

    PubMed  CAS  Google Scholar 

  • Borsook, H., Davenport, H.W., Jeffreys, C.E.P., and Warner, R.C. (1937) The oxidation of ascorbic acid and its reduction in vitro and in vivo. J. Biol. Chem. 117: 237–279.

    CAS  Google Scholar 

  • Boveris, A., and Chance B. (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134: 707–716.

    PubMed  CAS  Google Scholar 

  • Boveris, A., Nozomu, O., and Chance, B. (1972) The cellular production of hydrogen peroxide. Biochem. J. 128: 617–630.

    PubMed  CAS  Google Scholar 

  • Burk, R.F., Trumble, M.J., and Lawrence, R.A. (1980) Rat hepatic cytosolic glutathionedependent enzyme protection against lipid peroxidation in the NADPH-microsomal lipid peroxidation system. Biochim. Biophys. Acta 618: 35–41.

    PubMed  CAS  Google Scholar 

  • Christine (1956) The reduction of dehydroascorbic acid by human erythrocytes. Clin. Chim. Acta 1: 557–569.

    Article  PubMed  CAS  Google Scholar 

  • Coassin, M., Tomasi, A., Vannini, V., and Ursini, F. (1991) Enzymatic recycling of oxidized ascorbate in pig heart: One-electron vs two-electron pathway. Arch. Biochem. Biophys.. 290: 458–462.

    CAS  Google Scholar 

  • Dalton, D.A., Russell, S.A., Hanus, F.J., Pascoe, G.A., and Evans, H.J., (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc. Natl. Acad. Sci. USA 83: 3811–3815.

    Article  PubMed  CAS  Google Scholar 

  • Diliberto, E.J. Jr., Dean, G., Carter, C., and Allen, P.L. (1982) Tissue, subcellular, and submitochondrial distributions of semidehydroascorbate reductase: Possible role of semidehydroascorbate reductase in cofactor regeneration. J. Neurochem. 39: 563–568.

    Article  PubMed  CAS  Google Scholar 

  • Diplock, A.T., Machlin, L.J., Packer, L., and Pryor, W.A., Eds. (1989) Conference on ascorbic acid. Ann. N.Y. Acad. Sci. 570.

    Google Scholar 

  • Doba, T., Burton, G.W. and Ingold, K.U. (1985) Antioxidant and co-antioxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water soluble vitamin E analogue, upon the peroxidation of aqueous multilamellar phospholipid liposomes. Biochim. Biophys. Acta 835: 298–303.

    CAS  Google Scholar 

  • Dolphin, D., Poulson, R., and Avramovic, O. (Eds.) (1989) Glutathione: Chemical, Biochemical, and Medical Aspects, Parts A and B, Coenzyme and Cofactors Series, Vol. III. John Wiley, New York.

    Google Scholar 

  • Englard, S., and Seifter, S. (1986) The biochemical functions of ascorbic acid. Annu. Rev. Nutr. 6: 365–406.

    Article  PubMed  CAS  Google Scholar 

  • Flohe, L. (1989) The selenoprotein glutathione peroxidase. In: Glutathione Chemical, Biochemical, and Medical Aspects, eds. Dolphin, D., Poulson, R. liu Avramovic, O., Wiley, New York, Part A., pp. 643–731.

    Google Scholar 

  • Forman, H.J., and Boveris, A. (1982) Superoxide radical and hydrogen peroxide in mitochondria. In: Free Radicals in Biology, (Pryor, W.A., Ed.). Academic Press, New York, Vol. 5, pp. 65–90.

    Google Scholar 

  • Ginter, E. (1973) Cholesterol: Vitamin C controls its transformation to bile acids. Science 179: 702–704.

    Article  PubMed  CAS  Google Scholar 

  • Graham, K.S., Reddy, C.C., and Scholz, R.W.. (1989) Reduced glutathione effects on -tocopherol concentration of rat liver microsomes undergoing NADPH-dependent lipid peroxidation. Lipids 24: 909–914.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, O.W., Han, J., and Martensson, J. (1991) Vitamin C protects adult guinea pigs against tissue damage and lethality caused by buthionine sulfoximine-mediated glutathione depletion. FASEB J. 5: 4708.

    Google Scholar 

  • Griffith, O.W., and Meister, A. (1985) Origin and turnover of mitochondrial glutathione. Proc. Natl. Acad. Sci. USA 82: 4668–4672.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, T., O’Dwyer, P., Young, R., Tew, K., Padavic, K., Comis, R., and Ozols, R. (1990) Phase I trial of buthionine sulfoximine (BSO) plus melphalan (L-PAM) in patients with advanced cancer. Proc. Annu. Meet. Am. Soc. Clin. Oncol. 9: A281.

    Google Scholar 

  • Hopkins, F.G., and Morgan, E.J. (1936) Some relations between ascorbic acid and glutathione. B ioc hem. J. 30: 1446–1462.

    CAS  Google Scholar 

  • Iyanagi, T., Yamazaki, I., and Anan, K.F. (1985) One-electron oxidation-reduction properties of ascorbic acid. Biochim. Biophys. Acta 806: 255–361.

    CAS  Google Scholar 

  • Jain, A., Martensson, J., Mehta, T., Krauss, A.N., Auld, P.A.M., and Meister, A. (1992) Ascorbic acid prevents oxidative stress in glutathione-deficient mice; Effects on lung type 2 cell lamellar bodies, lung surfactant, and skeletal muscle. Proc. Natl. Acad. Sci. USA 89: 5093–5097.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, A., Orrenius, S., Holmgren, A., and Mannervik, B. (Eds.) (1983) Functions of Glutathione. Biochemical, Physiological, Toxicological, and Clinical Aspects. Raven Press, New York.

    Google Scholar 

  • Leedle, R.A., and Aust, S.D. (1990) The effect of glutathione on the vitamin E requirement for inhibition of liver microsomal lipid peroxidation. Lipids 25: 241–245.

    CAS  Google Scholar 

  • Levine, M. (1986) New concepts in the biology and biochemistry of ascorbic acid. N. Engl. J. Med. 314: 892–902.

    CAS  Google Scholar 

  • Loschen, G., and Flohe, L. (1971) Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Leu.. 18: 261–264.

    CAS  Google Scholar 

  • Mannervik, B. (1985) Glutathione peroxidase. Methods Enzymol 113: 490–4995.

    Article  PubMed  CAS  Google Scholar 

  • Martensson, J., Han, J., Griffith, O.W., and Meister, A. (1993) Glutathione ester delays the onset of scurvy in ascorbate-deficient guinea pigs. Proc. Natl. Acad. Sci. USA 90: 317–321.

    Article  PubMed  CAS  Google Scholar 

  • Martensson, J., Jain, A., Frayer, W., and Meister, A. (1989) Glutathione metabolism in the lung: Inhibition of its synthesis leads to lamellar body and mitochondrial defects. Proc. Natl. Acad. Sci. USA 86: 5296–5300.

    Article  PubMed  CAS  Google Scholar 

  • Martensson, J., Jain, A., and Meister, A. (1990a) Glutathione is required for intestinal function. Proc. Natl. Acad. Sci. USA 87: 1715–1719.

    Article  PubMed  CAS  Google Scholar 

  • Martensson, J., Jain, A., Stole, E., Frayer, W., Auld, P.A.M., and Meister, A. (1991) Inhibition of glutathione synthesis in the newborn rat: A model for endogenously produced oxidative stress. Proc. Natl. Acad. Sci. USA 88: 9360–9364.

    Article  PubMed  CAS  Google Scholar 

  • Martensson, J., Lai, J.C.K., and Meister, A. (1990b) High affinity transport of glutathione is part of a multicomponent system essential for mitochondrial function. Proc. Natl. Acad. Sci. USA 87: 7185–7189

    Article  PubMed  CAS  Google Scholar 

  • Martensson, J., and Meister, A. (1989) Mitochondrial damage in muscle occurs after marked depletion of glutathione and is prevented by giving glutathione monoester. Proc. Natl. Acad. Sci. USA 86: 471–475.

    Article  PubMed  CAS  Google Scholar 

  • Martensson, J., and Meister, A. (1991) Glutathione deficiency decreases tissue ascorbate levels in newborn rats: Ascorbate spares glutathione and protects. Proc. Natl. Acad. Sci. USA 88: 4656–4660.

    Article  PubMed  CAS  Google Scholar 

  • Martensson, J., and Meister, A. (1992) Glutathione deficiency increases hepatic ascorbic acid synthesis in adult mice. Proc. Natl. Acad. Sci. USA 89: 11566–11568.

    Article  CAS  Google Scholar 

  • McCay, P.B. and Powell, S.R. (1989) Relationship between glutathione and chemically induced lipid peroxidation. in: Glutathione Chemical, Biochemical, and Medical Aspects, Eds. Dolphin, D., Poulson, R., and Avramovic, O., Wiley, New York, Part B, pp. 111–151.

    Google Scholar 

  • Meister, A. (1978) Inhibition of glutamine synthetase and -glutamylcysteine synthetase by methionine sulfoximine and related compounds. Enzyme-activated Irreversible Inhibitors (N. Seiler, N., Jung, M.J., and Koch-Weser, J., Eds.), pp. 187–211. Elsevier-North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Meister, A. (1983) Selective modification of glutathione metabolism. Science 220: 471–477.

    Article  Google Scholar 

  • Meister, A. (1988) Glutathione metabolism and its selective modification. J. Biol. Chem. 263: 17205–17208.

    PubMed  CAS  Google Scholar 

  • Meister, A. (1988) Novel drugs that affect glutathione metabolism. In: Mechanisms of Drug Resistance in Neoplastic Cells (Tew, K.D., and Woolley, P.V., Eds.), Chap. 7, pp. 99–126. Bristol Myers Symposium No. 9, Academic Press, New York.

    Google Scholar 

  • Meister, A. (1991) Glutathione deficiency produced by inhibition of its synthesis and its reversal; Applications in research and therapy. Pharmacol. Ther. 51: 155–194.

    Article  PubMed  CAS  Google Scholar 

  • Meister, A. (1992a) On the antioxidant effects of ascorbic acid and glutathione. Biochem. Pharmacol. 44: 1905–1915.

    Article  PubMed  CAS  Google Scholar 

  • Meister, A. (1992b) A trail of research: From glutamine synthetase to selective inhibition of glutathione synthesis. ChemTracts Biochemistry liu Molecular Biology 3: 75–106.

    CAS  Google Scholar 

  • Meister, A. (1992c) Depletion of glutathione in normal and malignant human cells in vivo by Lbuthionine sulfoximine: Possible interaction with ascorbate. J. Natl. Cancer Inst. 84: 1601–1602.

    PubMed  CAS  Google Scholar 

  • Meister, A., and Anderson, M.E. (1983). Glutathione. Annu. Rev. Biochem. 52: 711–760.

    Article  PubMed  CAS  Google Scholar 

  • Mills, G.C. (1957) Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin froth oxidative breakdown. J. Biol. Chem. 229: 189–197.

    PubMed  CAS  Google Scholar 

  • Niki, E., Tsuchiya, J., Tanimura, R., and Kamiya, T. (1982) Regeneration of vitamin E fromchromanoxyl radical by glutathione and vitamin C. Chem. Lett. 789–792.

    Google Scholar 

  • O’Dwyer, P.J., Hamilton, T.C., Young, R.C., LaCreta, F.P., Carp, N., Tew, K.D., Padavic, R., Comis, L., and Ozols, R.F. (1992) Depletion of glutathione in normal and malignant human cells in vivo by buthionine sulfoximine: Clinical and biochemical results. J. Natl. Cancer Inst. 84: 264–267.

    Article  PubMed  Google Scholar 

  • Ozols, R.F., Hamilton, T.C., Masuda, H., and Young, R.C. (1988) Manipulation of cellular thiols to influence drug resistance. In: Mechanisms of Drug Resistance in Neoplastic Cells (Eds. Tew, K.D., and Woolley, P.V.), Chap. 19, pp. 289–305. Bristol Myers Symposium No. 9, Academic Press, New York.

    Google Scholar 

  • Packer, J.E., Slater, T.F. and Wilson, R.L. (1979) Nature (London) Direct observation of a free radical interaction between vitamin E and vitamin C. 278: 737–738.

    CAS  Google Scholar 

  • Puri, R.N., and Meister, A. (1983) Transport of glutathione as -glutamylcysteinylglycyl ester, into liver and kidney. Proc. Natl. Acad. Sci. USA 80: 5258–5260.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, C.C., Scholz, R.W., Thomas, C.E., and Massaro, E.J., (1982) Vitamin E dependent reduced glutathione inhibition of rat liver microsomal lipid peroxidation. Life Sci. 31: 571–576.

    CAS  Google Scholar 

  • Rose (1989) Renal metabolism of the oxidized form of ascorbic acid (dehydro-L-ascorbic acid). Am. J. Physiol. 256: F52–F56.

    PubMed  CAS  Google Scholar 

  • Scholich, H., Murphy, M.E., and Sies, H. (1989) Antioxidant activity of dihydrolipoate against microsomal lipid peroxidation and its dependence on -tocopherol. Biochim. Biophys.. Acta 1001: 256–261.

    PubMed  CAS  Google Scholar 

  • Stahl, R.L., Liebes, L.F., and Silber, R. (1986) Glutathione dehydrogenase (ascorbate). Methods Enzymol. 122: 10–12.

    Article  PubMed  CAS  Google Scholar 

  • Szent-Gyorgyi, A. (1928) CLXXII. Observations on the function of peroxidase systems and the chemistry of the adrenal cortex. Description of a new carbohydrate derivative. Biochem. J. 22: 1387–1409.

    PubMed  CAS  Google Scholar 

  • Taniguchi, N., Higashi, T., Sakamoto, Y., and Meister, A. (Eds.) (1989) Glutathione Centennial, Molecular Perspectives and Clinical Implications. Academic Press, New York.

    Google Scholar 

  • Ursini, F., Maiorino, M., Valente, M., Ferri, L., and Gregolin, C. (1981) Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim. Biophys. Acta 710: 197–211.

    Google Scholar 

  • Vistica, D.T., and Ahmad S. (1989) Acquired resistance of tumors cells to L-phenylalanine mustard: Implications for the design of a clinical trial involving glutathione depletion. In: Glutathione Centennial: Molecular Perspectives and Clinical Implications (Taniguchi, N., Higashi, T., Sakamoto, Y., and Meister, A., Eds.), Chap. 21, pp. 301–315. Academic Presss, New York.

    Google Scholar 

  • Wefers, H., and Sies, H. (1988) The protection by ascorbate and glutathione against microsomal lipid peroxidation is dependent on vitamin E. Eur. J. Biochem. 174: 353–357.

    Article  CAS  Google Scholar 

  • Wellner, V.P., Anderson, M.E., Puri, R.N., Jensen, G.L., and Meister, A. (1984) Radioprotection by glutathione ester: Transport of glutathione ester in human lymphoid cells and fibroblasts. Proc. Natl. Acad. Sci. USA 81: 4732–4735.

    Article  PubMed  CAS  Google Scholar 

  • Wells, W.W., Xu, D.P., Yang, Y., and Rocque, P.A. (1990) Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J. Biol. Chem. 265: 15361–15364.

    PubMed  CAS  Google Scholar 

  • Wells, W.W., Yang, Y., Deits, T.L., and Gan, Z.-R. (1992) Thioltransferases. Adv. Enzymol. 66: 149–201.

    Google Scholar 

  • Willis, G.C. (1953) An experimental study of the intimai ground substance in atherosclerosis. Can. Med. Assoc. J. 69: 17–22.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Meister, A. (1994). The Antioxidant Effects of Glutathione and Ascorbic Acid. In: Pasquier, C., Olivier, R.Y., Auclair, C., Packer, L. (eds) Oxidative Stress, Cell Activation and Viral Infection. Molecular and Cell Biology Updates. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7424-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7424-3_11

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7426-7

  • Online ISBN: 978-3-0348-7424-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics