Skip to main content

Enzyme-substrate interactions modulating protonation and tautomerization states of the aldimines of pyridoxal enzymes

  • Conference paper
Book cover Biochemistry of Vitamin B6 and PQQ

Part of the book series: Advances in Life Sciences ((ALS))

  • 183 Accesses

Summary

The mechanism of activation of PLP-Lys aldimines of Aspartate aminotransferase (AspAT), aromatic amino acid aminotransferase (ArAT), and aromatic L-amino acid decarboxylase (AADC) to the ketoenamine form was studied. In AspAT and ArAT the aldimines exist as the nonprotonated form. Upon binding of substrate amino acids, the pK a of these aldimines are increased and the aldimines become the protonated, ketoenamine form, which is considered to be favorable for transaldimination. The increase in pK a by binding of amino acids was proved by mutagenesis studies to be mediated mainly by interaction of α-carboxylate group of the substrate and Arg386 of the enzymes. In AADC, the aldimine is protonated, but it exists as the enolimine tautomer and is not favorable for transaldimination. In the presence of a substrate amino acid, it undergoes tautomerization to the ketoenamine form. Pyridoxal enzymes show a variety of spectra, and PLP-Lys aldimines exist as several protonated/deprotonated forms. However, it is proposed that all these forms are converted to the protonated, ketoenamine form upon binding of substrate amino acids, either by altering the pK a values of the PLP-Lys aldimines or by changing the polarity of the microenvironment around the aldimines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Goldberg, J.M., Swanson, R.V., Goodman, H.S. and Kirsch, J.F. (1991) Structure of the complex between pyridoxal 5’-phosphate and the tyrosine 225 to phenylalanine mutant of Escherichia coli aspartate aminotransferase determined by isotope-edited classical Raman difference spectroscopy. Biochemistry 30: 305–312.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Mizuguchi, H. and Kagamiyama, H. (1993a) Rat liver aromatic L-amino acid decarboxylase: Spectroscopic and kinetic analysis of the coenzyme and reaction intermediates. Biochemistry 32: 812–818.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Inoue, K., Nagata, T., Kuramitsu, S. and Kagamiyama, H. (1993b) Escherichia coli aromatic amino acid aminotransferase: Characterization and comparison with aspartate aminotransferase. Biochemistry 32: 12229–12239.

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki, M., Hayashi, H. and Kagamiyama, H. (1994) Protonation state of the active-site Schiff base of aromatic amino acid aminotransferase: Modulation by binding of ligands and implications for its role in catalysis. J. Biochem. 115: 156–161.

    PubMed  CAS  Google Scholar 

  • Kallen, R.G., Korpela, T., Martell, A.E., Matsushima, Y., Metzler, C.M., Metzler, D.E., Morozov, Yu.V., Ralston, I.M., Savin, F.A., Torchinsky, Yu.M. and Ueno, H. (1985) Chemical and spectroscopic properties of pyridoxal and pyridoxamine phosphates. in Transaminases ( Christen, P., & Metzler, D.E., Eds.) pp 37–108, John Wiley & Sons, New York.

    Google Scholar 

  • Kamitori, S., Hirotsu, K., Higuchi, T., Kondo, K., Inoue, K., Kuramitsu, S., Kagamiyama, H., Higuchi, Y., Yasuoka, N., Kusunoki, M., H. and Matsuura, Y. (1987) Overproduction and preliminary X-ray characterization of aspartate aminotransferase from Escherichia coli. J. Biochem. 101: 813–816.

    CAS  Google Scholar 

  • Kamitori, S., Okamoto, A., Hirotsu, K., Higuchi, T., Kuramitsu, S., Kagamiyama, H., Matsuura, Y. and Katsube, Y. (1990) Three-dimensional structure of aspartate aminotransferase from Escherichia coli and its mutant enzyme at 2.5 A resolution. J. Biochem. 108: 175–184.

    PubMed  CAS  Google Scholar 

  • Kirsch, J.F., Eichele, G., Ford, G.C., Vincent, M.G., Jansonius, J.N., Gehring, H. and Christen, P. (1984) Mechanism of action of aspartate aminotransferase proposed on the basis off its spatial structure. J. Mol. Biol. 174: 497–525.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R.G. (1970) Imidazolylacetolphosphate: L-glutamate aminotransferase—Mechanism of Action. Arch. Biochem. Biophys. 138: 239–244.

    Article  PubMed  CAS  Google Scholar 

  • Metzler, D.E. (1977) Biochemistry, pp. 444–461, Academic Press, New York.

    Google Scholar 

  • Metzler, C. M., Viswanath, R. and Metzler, D. E. (1991). Equilibria and absorption spectra of tryptophanase. J. Biol. Chem. 266: 9374–9381.

    PubMed  CAS  Google Scholar 

  • O’Leary, M.H. (1971) A proposed structure for the 330-nm chromophore of glutamate decarboxylase and other pyridoxal 5’-phosphate dependent enzymes. Biochim. Biophys. Acta 242: 484–492

    PubMed  Google Scholar 

  • Snell, E.E. (1985) Pyridoxal phosphate in nonenzymic and enzymic reactions. in Transaminases ( Christen, P., & Metzler, D.E., Eds.) pp 19–35, John Wiley & Sons, New York.

    Google Scholar 

  • Voltattorni, C.B., Minelli, A., Vecchini, P., Fiori, A. and Turano, C. (1979) Purification and characterization of 3,4-dihydroxyphenylalanine decarboxylase from pig kidney. Eur. J. Biochem. 93: 181–188.

    Article  PubMed  CAS  Google Scholar 

  • Yano, T., Kuramitsu, S., Tanase, S., Morino, Y. and Kagamiyama, H. (1992) Role of Asp222 in the catalytic mechanism of Escherichia coli aspartate aminotransferase: The amino acid residue which enhances the function of the enzyme-bound coenzyme pyridoxal 5’-phosphate. Biochemistry 31: 5878–5887.

    Article  PubMed  CAS  Google Scholar 

  • Yano, T., Mizuno, T. and Kagamiyama, H. (1993) A hydrogen-bonding network modulating enzyme function: asparagine-194 and tyrosine-225 of Escherichia coli aspartate aminotransferase. Biochemistry 32: 1810–1815.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Kagamiyama, H., Hayashi, H., Yano, T., Mizuguchi, H., Ishii, S. (1994). Enzyme-substrate interactions modulating protonation and tautomerization states of the aldimines of pyridoxal enzymes. In: Marino, G., Sannia, G., Bossa, F. (eds) Biochemistry of Vitamin B6 and PQQ. Advances in Life Sciences. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7393-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7393-2_7

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7395-6

  • Online ISBN: 978-3-0348-7393-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics