Advertisement

Abstract

VIP was first isolated from the small intestine, but it had been discovered earlier in the lung, as a vasodilator peptide [1, 2]. Several years later it was identified in the central and peripheral nervous systems [3], and has since been recognized as a neuropeptide with wide distribution, acting as a neuroransmitter or neuromodulator in the lung and practically all other organs and tissues. The discovery and characterization of VIP has spawned an active field of research in the regulation of lung function by peptides. To date, at least 20 other peptides have been demonstrated in the lung, and their functions investigated [4, 5].

Keywords

Vasoactive Intestinal Peptide Airway Smooth Muscle Vasoactive Intestinal Polypeptide Smooth Muscle Relaxation Pituitary Adenylate Cyclase Activate Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Said SI. Vasoactive substances in the lung. In Proceedings of the Tenth Aspen Emphysema Conference, Aspen, Colorado, June 7–10, 1967. US Public Health Service Publication 1787, 1967: 223–8.Google Scholar
  2. 2.
    Said SI, Mutt V. Polypeptide with broad biological activity: Isolation from small intestine. Science 1970; 169: 1217–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Said SI, Rosenberg RN. Vasoactive intestinal polypeptide: abundant immunoreactivity in neural cell lines and normal nervous tissues. Science 1976; 192: 907–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Said SI. Polypeptide-containing neurons and their function in airway smooth muscle. In Coburn RF, editor. Airway Smooth Muscle in Health and Disease. New York: Plenum, 1989; 55–76.CrossRefGoogle Scholar
  5. 5.
    Boomsma JD, Said SI. The role of neuropeptides in asthma. Chest 1992; 101: 389592S.Google Scholar
  6. 6.
    Dey RD, Shannon WA, Jr, Said SI. Localization of VIP-immunoreactive nerves in airways and pulmonary vessels of dogs, cats, and human subjects. Cell Tissue Res 1981; 220: 231–8.PubMedGoogle Scholar
  7. 7.
    Uddman R, Sundler F. VIP nerves in human upper respiratory tract. Otorhinolaryngology 1979; 41: 221–6.Google Scholar
  8. 8.
    Lundberg JM, Lundblad L, Martling C-R, Saria A, Stjärne P, Änggärd A. Coexistence of multiple peptides and classic transmitters in airway neurons: functional and pathophysiologic aspects. Am Rev Resp Dis 1987; 136: S16 - S22.PubMedCrossRefGoogle Scholar
  9. 9.
    Lundberg JM, Saria A. Polypeptide-containing neurons in airway smooth muscle. Ann Rev Physiol 1987; 49: 557–72.CrossRefGoogle Scholar
  10. 10.
    Dey RD, Altemus JB. Distribution of cholinergic and VIP-containing neurons in ferret tracheal plexus. Am Rev Resp Dis 1991; 143: A362.Google Scholar
  11. 11.
    Dey RD, Altemus JB, Michalkiewicz M. Distribution of VIP- and SP-containing nerves originating from neurons of airway ganglia in cat bronchi. J Comp Neurol 1991; 304: 330–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Springall DR, Polak JM, Howard L, Power RF, Krausz T, Manisckam S, et al. Persistence of intrinsic neurones and possible phenotypic changes after extrinsic denervation of human respiratory tract by heart lung transplantation. Am Rev Resp Dis 1990; 141: 1538–46.PubMedGoogle Scholar
  13. 13.
    Pakbaz H, Berisha H, Absood A, Foda HD, Said SI. VIP in sensory nerves of the lung: Capsaicin-induced release of immunoreactive vasoactive intestinal peptide [VIP] from guinea pig lungs. Am Rev Resp Dis 1993; 147: A477.Google Scholar
  14. 14.
    Dey RD, Hoffpair J, Said SI. Co-localization of VIP- and SP-containing nerves in cat bronchi. Neuroscience 1988; 24: 275–81.PubMedCrossRefGoogle Scholar
  15. 15.
    Dey RD, Altemus JB, Zervos I, Hoffpair J. Origin and colocalization of CGRP- and SP-reactive nerves in cat airway epithelium. J App Physiol 1990; 68: 770–8.Google Scholar
  16. 16.
    Cutz E, Chan W, Track NS, Goth A, Said SI. Release of vasoactive intestinal polypeptide in mast-cells by histamine liberators. Nature 1978; 275: 661–2.PubMedCrossRefGoogle Scholar
  17. 17.
    Goetzl EJ, Sreedharan SP, Turck CW. Structurally distinctive vasoactive intestinal peptides from rat basophilic leukemia cells. J Biol Chem 1988; 263: 9083–6.PubMedGoogle Scholar
  18. 18.
    Wershil Bk, Turck CW, Sreedharan SP, Yang J, An S, Galli SJ, Goetzl EJ. Variants of vasoactive intestinal peptide in mouse mast cells and rat basophilic leukemia cells. Cell Immunol 1993; 151: 369–78.CrossRefGoogle Scholar
  19. 19.
    Aliakbari J, Sreedharan SP, Turck CW, Goetzl EK. Selective localization of vasoactive intestinal peptide and substance P in human eosinophils. Biochem Biophys Res Comm 1987; 148: 1440–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Luts A, Uddman R, Absood A, Hâkanson R, Sundler F. Chemical coding of endocrine cells of the airways: presence of helodermin-like peptides. Cell Tissue Res 1991; 265: 425–33.PubMedCrossRefGoogle Scholar
  21. 21.
    Cardell LO, Uddman R, Luts A, Sundler F. Pituitary adenylate cyclase activating peptide (PACAP) in guinea-pig lung: distribution and dilatory effects. Regulatory Peptides 1991; 36: 379–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Moller K, Zhang Y-Z, Hâkanson R, Luts A, Sjölund B, Uddman R, et al Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: immunocytochemical and immunochemical evidence. Neuroscience 1993; 57: 725–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Itoh N, Obata K, Yanaihara N, Okamoto H. Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 1983; 304: 547–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Gozes I, Nakai H, Byers M, Avidor R, Weinstein Y, Shani Y, et al Sequential expression in the nervous system of the VIP and c-myc genes located on the human chromosomal region 6q24. Somatic Cell and Mol Genetics 1987; 13: 305–13.CrossRefGoogle Scholar
  25. 25.
    Linder ST, Barkhem A, Norberg H, Persson H, Schalling M, Hökfelt T, Magnusson G. Structure and expression of the gene encoding the vasoactive intestinal peptide precursor. Proc Nat Acad Sci 1987; 84: 604–9.CrossRefGoogle Scholar
  26. 26.
    Ohsawa K, Hayakawa Y, Nishizawa M, Yamagami T, Yamamoto H, Yanaihara N, Okamoto H. Synergistic stimulation of VIP/PHM-27 gene expression by cyclic AMP and phorbol esters in human neuroblastoma cells. Biochem Biophys Res Comm 1985; 132: 885–91.PubMedCrossRefGoogle Scholar
  27. 27.
    Uddman R, Luts A, Sundler F. Nerves fibres containing peptide histidine isoleucine [PHI] in the respiratory tract. Arch Otorhinolaryngol 1985; 242: 189–93.PubMedCrossRefGoogle Scholar
  28. 28.
    Fruness JB, Bornstein JC, Murphy R, Pompolo S. Roles of peptides in transmission in the enteric nervous system. Trends Neurosci 1992; 15: 66–71.CrossRefGoogle Scholar
  29. 29.
    Shimosegawa T, Foda HD, Said SI. Opioid peptides in guinea pig and rat lungs: Their sources and colocalization with VIP and PHI. Am Rev Resp Dis 1989; 139: A470.CrossRefGoogle Scholar
  30. 30.
    Dey RD, Zhu W. Origin of galanin in nerves of cat airways and colocalization with vasoactive intestinal peptide. Cell Tissue Res 1994; 273: 193–200.CrossRefGoogle Scholar
  31. 31.
    Bowden JJ, Gibbins IL. Vasoactive intestinal peptide and neuropeptide Y co-exist in non-adrenergic sympathetic neurons to guinea pig trachea. J Auton Nervous Sys 1992; 38: 1–20.CrossRefGoogle Scholar
  32. 32.
    Lundberg JM, Hökfelt T, Schultzberg M, Uvnas-Wallensten K, Kohler C, Said SI. Occurrence of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in certain cholinergic neurons of the cat: evidence from combined immunohistochemistry and acetylcholine esterase staining. Neuroscience 1979; 4: 1539–59.PubMedCrossRefGoogle Scholar
  33. 33.
    Laitinen A, Partanen M, Hervonen A, Pelto-Huikko M, Laitinen LA. VIP-like immunoreactive nerves in human respiratory tract. Histochemistry 1985; 82: 313–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Kummer K, Fischer A, Mundel P, Mayer B, Hoba B, Philippin B, et al Nitric oxide synthase in VIP-containing vasodilator nerve fibres in the guinea pig. Neuroreport 1992; 3: 653–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Dey RD, Mayer B, Said SI. Colocalization of vasoactive intestinal peptide and nitric oxide synthase in neurons of ferret trachea. Neuroscience 1993; 54: 839–43.PubMedCrossRefGoogle Scholar
  36. 36.
    Lundberg JM, Änggârd A, Emson P, Fahrenkrug J, Hökfelt T, Mutt M. Vasoactive intestinal polypeptide in cholinergic neurons of exocrine glands: functional significance of coexisting transmitters of vasodilation and secretion. Proc Nat Acad Sci 1980; 77: 1651–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Ellis JL, Farmer SG. Modulation of cholinergic neurotransmission by vasoactive intestinal peptide and peptide histamine isoleucine in guinea-pig tracheal smooth muscle. Pulm Pharmacol 1989; 2: 107.PubMedCrossRefGoogle Scholar
  38. 38.
    Martin JG, Wang A, Zacour M, Biggs DF. The effects of vasoactive intestinal polypeptide on cholinergic neurotransmission in an isolated innervated guinea pig tracheal preparation. Resp Physiol 1990; 79: 111–21.CrossRefGoogle Scholar
  39. 39.
    Said SI. Neuropeptides as modulators of injury and inflammation. Life Sciences 1990; 47: PL-19-PL-21.Google Scholar
  40. 40.
    Said SI. Nitric oxide and vasoactive intestinal peptide as co-transmitters of smooth muscle relaxation. News Physiol Sci 1992; 7: 181–3.Google Scholar
  41. 41.
    Grider JR, Murthy KS, Jin J-G, Makhlouf GM. Stimulation of nitric oxide from muscle cells by VIP: prejunctional enhancement of VIP release. Am J Physiol 1992; 262: G774–8.PubMedGoogle Scholar
  42. 42.
    Piper PJ, Said SI, Vane JR. Effects on smooth muscle preparations of unidentified vasoactive peptides from the intestine and lung. Nature 1970; 225: 1144–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Said SI, Kitamura S, Yoshida T, Preskitt J, Holden LD. Humoral control of airways. Ann NY Acad Sci 1974; 221: 103–14.PubMedCrossRefGoogle Scholar
  44. 44.
    Wasserman MA, Griffin RL, Malo PE. Comparative in vitro tracheal-relaxant effects of porcine and hen VIP. In Said SI, editor. Vasoactive Intestinal Peptide. New York: Raven Press, 1982; 177–84.Google Scholar
  45. 45.
    Ito Y, Takeda K. Non-adrenergic inhibitory nerves and putative transmitters in the smooth muscle of cat trachea. J Physiol 1982; 330: 497–511.PubMedGoogle Scholar
  46. 46.
    Cameron AC, C.T. Kirkpatrick CT, Kirkpatrick MCA. The quest for the inhibitory neurotransmitter in bovine tracheal smooth muscle. Quart J Exp Physiol 1983; 68: 413–26.Google Scholar
  47. 47.
    Hamasaki Y, Saga TM, Mojarad M, Said SI. VIP counteracts leukotriene D4-induced contractions of guinea pig trachea, lung and pulmonary artery. Trans Ass Am Physicians 1983; 96: 406–11.Google Scholar
  48. 48.
    Said SI. Influence of neuropeptides on airway smooth muscle. Am Rev Resp Dis 1987; 136: S52 - S58.PubMedGoogle Scholar
  49. 49.
    Said SI. Vasoactive intestinal peptide in the lung. Ann NY Acad Sci 1988; 527: 450–64.PubMedCrossRefGoogle Scholar
  50. 50.
    Boomsma JD, Foda HD, Said SI. Vasoactive intestinal peptide (VIP) reverses endothelin-induced contractions of guinea pig trachea and pulmonary artery. Am Rev Resp Dis 1990; 141: A485.Google Scholar
  51. 51.
    Altiere RJ, Diamond L. Comparison of vasoactive intestinal peptide and isoproterenol relaxant effects in isolated cat airways. J Appl Physiol 1984; 56: 986–92.PubMedGoogle Scholar
  52. 52.
    Hand JM, Laravuso RB, Will JA. Relaxation of isolated guinea pig trachea, bronchi and pulmonary arteries produced by vasoactive intestinal peptide [VIP]. Eur J Pharmacol 1984; 98: 279–84.PubMedCrossRefGoogle Scholar
  53. 53.
    Saga T, Said SI. Vasoactive intestinal peptide relaxes isolated strips of human bronchus, pulmonary artery, and lung parenchyma. Trans Ass Am Physicians 1984; 97: 304–10.Google Scholar
  54. 54.
    Palmer JB, Cuss FMC, Barnes PJ. VIP and PHM and their role in non-adrenergic inhibitory responses in isolated human airways. Am J Physiol 1986; 61: 1322–8.Google Scholar
  55. 55.
    Said SI, Geumei A, Hara N. Bronchodilator effect of VIP in vivo: Protection against bronchoconstriction induced by histamine or prostaglandin F2a. In Said SI, editor. Vasoactive Intestinal Peptide. New York: Raven Press, 1982: 185–91.Google Scholar
  56. 56.
    Diamond L, Szarek JL, Gillespie MN, Altiere RJ. In vivo bronchodilator activity of vasoactive intestinal peptide in the cat. Am Rev Resp Dis 1983; 128: 827–32.PubMedGoogle Scholar
  57. 57.
    Liu L-W, Sata T, Kubota E, Paul S, Said SI. Airway relaxant effect of vasoactive intestinal peptide (VIP): Selective potentiation by phosphoramidon, an enkephalinase inhibitor. Am Rev Resp Dis 1987; 135: A86.Google Scholar
  58. 58.
    Sharaf H, Said SI. Tracheal relaxant response to vasoactive intestinal peptide [VIP]: Influence of airway epithelium and peptidases. FASEB J 1993; 7: A686.Google Scholar
  59. 59.
    Liu L-W, Trotz M, Erdös EG, Said SI. Vasoactive intestinal peptide [VIP] and helodermin degradation by airway enzymes. Am Rev Resp Dis 1991; 143: A618.Google Scholar
  60. 60.
    Foda HD, Said SI. Helodermin, a C-terminally extended VIP-like peptide, evokes long-lasting tracheal relaxation. Biomed Res 1989; 10: 107–10.Google Scholar
  61. 61.
    Yoshihara S, Ichimura T, Yanaihara N. Lasting inhibitory effect of helodermin inhalation on guinea pig airway contraction. Biomed Res 1992; 13 [Supp1.2]: 361–71.Google Scholar
  62. 62.
    Bolin DR, Cottrell J, Michalewsky J, Garippa R, O’Neill N, Simko B, et al Degradation of vasoactive intestinal peptide in bronchial alveolar lavage fluid. Biomed Res 1992; 13: 25–30.Google Scholar
  63. 63.
    Ito O, Tachibana S. Vasoactive intestinal polypeptide precursors have highly potent bronchodilatory activity. Peptides 1991; 12: 131–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Nathanson I, Widdicombe JH, Barnes PJ. Effect of vasoactive intestinal peptide on ion transport across dog tracheal epithelium. J Appl Physiol 1983; 55: 1844–48.PubMedGoogle Scholar
  65. 65.
    Stoff JS, Rosa R, Hallac R, Silva P, Epstein FH. Hormonal regulation of active chloride ion transport in the dogfish rectal gland. Am J Physiol 1979; 237: F138–44.PubMedGoogle Scholar
  66. 66.
    Lowry RJ, Schreiber JH, Ernst SA. Vasoactive intestinal peptide stimulates ion transport in avian salt gland. Am J Physiol 1987; 252: C670–6.Google Scholar
  67. 67.
    Gerstberger R, Gray A. Fine structure, innervation and functional control of avian salt glands. Int Rev Cytol 1993; 144: 129–215.CrossRefGoogle Scholar
  68. 68.
    Cliff WH, Frizzell RA. Separate Cl-conductances activated by cAMP and Ca’ in Cl-secreting epithelial cells Proc Nat Acad Sci 1980; 87: 4956–60.Google Scholar
  69. 69.
    Huang SJ, Fu W, Chung YW, Zhou TS, Wong PYD. Properties of cAMP-dependent and Ca“-dependent whole cell Cl-conductances in rat epididymal cells. Am J Physiol 1993; 264: C794 - C802.PubMedGoogle Scholar
  70. 70.
    Martin SC, Shuttleworth TJ. Vasoactive intestinal peptide stimulates a cAMP-mediated Cl-current in avian salt gland cells. Regulatory Peptides, 1994; 52: 205–14.PubMedCrossRefGoogle Scholar
  71. 71.
    Peatfield AC, Barnes PJ, Bratcher C, Nadel JA, Davis B. Vasoactive intestinal peptide stimulates tracheal submucosal gland secretion in ferret. Am Rev Resp Dis 1983; 128: 89–93.PubMedGoogle Scholar
  72. 72.
    Elgavish A, Pillion DJ, Meezan E. Evidence for vasoactive intestinal peptide receptors in apical membranes from tracheal epithelium. Life Sci 1989; 44: 1037–42.PubMedCrossRefGoogle Scholar
  73. 73.
    Coles SJ, Said SI, Reid LM. Inhibition by vasoactive intestinal peptide of glycoconjugate and lysozyme secretion by human airways in vitro. Am Rev Resp Dis 1981; 124: 531–6.PubMedGoogle Scholar
  74. 74.
    Sakai N, Tamaoki J, Kobayashi K, Kanemura T, Isono K, Takeyama K, et al Vasoactive intestinal peptide stimulates ciliary motility in rabbit tracheal epithelium: modulation by neutral endopeptidase. Regulatory Peptides 1991; 34: 33–41.PubMedCrossRefGoogle Scholar
  75. 75.
    Malm L, Undler SF, Uddman R. Effects of vasoactive intestinal polypeptide on resistance and capacitance vessels in the nasal mucosa. Acta Otolaryngology 1980; 90: 304–8.CrossRefGoogle Scholar
  76. 76.
    Widdicombe JG. Pulmonary and respiratory tract receptors. J Exp Biol 1982; 100: 41–57.PubMedGoogle Scholar
  77. 77.
    Nandiwada PA, Kadowitz PJ, Said SI, Mojarad M, Hyman AL. Pulmonary vasodilator responses to vasoactive intestinal peptide in the cat. J Appl Physiol 1985; 58: 1723–8.PubMedGoogle Scholar
  78. 78.
    Sata T, Misra HP, Kuboto E, Said SI. Vasoactive intestinal polypeptide relaxes pulmonary artery by an endothelium-independent mechanism. Peptides 1986; 7 (Suppl.): 225–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Laitinen LA, Laitinen A, Salonen RO, Widdicombe JG. Vascular actions of airway neuropeptides. Am Rev Resp Dis 1987; 136: S59–64.PubMedGoogle Scholar
  80. 80.
    Laitinen LA, Laitinen A, Widdicombe JG. Effects of inflammatory and other mediators on airway vascular beds. Am Rev Resp Dis 1987; 135: 567–70.Google Scholar
  81. 81.
    Said SI. VIP and nitric oxide: physiological co-transmitters with antagonistic roles in inflammation. Biomed Res 1993. In press.Google Scholar
  82. 82.
    Krco CJ, Gores A, Go VLW. Gastrointestinal regulatory peptides modulate in vitro immune reactions of mouse lymphoid cells. Clin Immunol Immunopathol 1986; 39: 308–18.PubMedCrossRefGoogle Scholar
  83. 83.
    Ottaway CA. Selective effects of vasoactive intestinal peptide on the mitogenic response of murine T cells. Immunology 1987; 62: 291–7.PubMedGoogle Scholar
  84. 84.
    Sun L, Ganea D. Vasoactive intestinal peptide inhibits interleukin [IL]-2 and IL-4 production through different molecular mechanisms in T cells activated via the T cell receptor/CD3 complex. J Neuroimmunol 1993; 48: 59–70.PubMedCrossRefGoogle Scholar
  85. 85.
    Rola-Pleszczynski M, Bolduc D, St.-Pierre S. The effects of vasoactive intestinal peptide on human natural killer cell function. J Immunol 1985; 135: 2569–73.PubMedGoogle Scholar
  86. 86.
    Wiik P. Vasoactive intestinal peptide inhibits the respiratory burst in human monocytes by a cyclic AMP-mediated mechanism. Regulatory Peptides 1989; 25: 187–97.PubMedCrossRefGoogle Scholar
  87. 87.
    Litwin DK, Wilson AK, Said SI. Vasoactive intestinal polypeptide inhibits rat alveolar macrophage phagocytosis and chemotaxis. Regulatory Peptides 1992; 40: 63–74.PubMedCrossRefGoogle Scholar
  88. 88.
    Undem BJ, Dick EC, Buckner CK. Inhibition by vasoactive intestinal peptide of antigen-induced histamine release from guinea-pig minced lung. Eur J Pharmacol 1983; 88: 247–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Cox CP, Linden J, Said SI. VIP elevates platelet cyclic AMP [cyclic AMP] levels and inhibits in vitro platelet activation induced by platelet-activating factor (PAF). Peptides 1984; 5: 325–8.PubMedCrossRefGoogle Scholar
  90. 90.
    O’Dorisio MS, Hermina N, Balcerzak SP, O’Dorisio TM. Vasoactive intestinal polypeptide stimulation of adenylate cyclase in purified human leukocyte. J Immunol 1981; 127: 2551–4.PubMedGoogle Scholar
  91. 91.
    Maruno K, Said SI. Inhibition of human airway smooth muscle cell proliferation by vasoactive intestinal peptide (VIP). In Rosselin G, editor. VIP, PACAP, and Related Regulatory Peptides. River Edge, NJ: World Scientific, 1994: 587–92.Google Scholar
  92. 92.
    erenshaw S, Jarvis D, Woolcock A, Sullican C, Scheibner T. Absence of immunoreactive vasoactive intestinal polypeptide in tissue from the lungs of patients with asthma. New Eng J Med 1989; 320: 1244–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Hossain S. Quantitative measurement of bronchial muscle in men with asthma. Am Rev Resp Dis 1973; 107: 99–109.PubMedGoogle Scholar
  94. 94.
    James AL, Pare PD, Hogg JC. Mechanisms of airway narrowing in asthma. Am Rev Resp Dis 1989; 139: 242–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Wiggs BR, Bosken CH, Paré PD, James A, Hogg JC. A model of airways narrowing in asthma and in chronic obstructive pulmonary disease. Am Rev Resp Dis 1992; 145: 1251–8.PubMedGoogle Scholar
  96. 96.
    Wiggs BR, Moreno R, Hogg JC, Hilliam C, Paré PD. A model of the mechanics of airway narrowing. J Appl Physiol 1990; 69: 849–60.PubMedGoogle Scholar
  97. 97.
    Lundberg JM, Martling C-R, Hökfelt T. Airways, oral cavity and salivary glands: classical transmitters and peptides in sensory and autonomic motor neurons. In Bjorklund A, Hökfelt T, Owman C, editors. Handbook of Chemical Neuroanatomy vol. 6. Peipheral Nervous System. Amsterdam: Elsevier, 1988: 391–444.Google Scholar
  98. 98.
    Ward JK, Belvisi MG, Fox AJ, Miura M, Tadjkarimi S. Modulation of cholinergic neural bronchoconstriction by endogenous nitric oxide and vasoactive intestinal peptide in human airways in vitro. J Clin Invest 1993; 92: 736–43.PubMedCrossRefGoogle Scholar
  99. 99.
    Barnes PJ. Neuropeptides and asthma. Am Rev Resp Dis 1991; 143: S28 - S32.PubMedGoogle Scholar
  100. 100.
    Young HM, Furness JB, Shuttleworth CWR, Bredt DS, Snyder SH. Co-localization of nitric oxide synthase immunoreactivity and NADPH diaphorase staining in neurons of the guinea-pig intestine. Histochemistry 1992; 97: 375–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Li CG, Rand MJ. Nitric oxide and vasoactive intestinal polypeptide mediate nonadrenergic, noncholinergic inhibitory neuro-transmission to smooth muscle of the rat gastric fundus. Eur J Pharmacol 1990; 191: 303–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Sharaf HH, Said SI. VIP relaxation of airway, pulmonary artery and aortic vascular smooth muscle is unaffected by blockade of nitric oxide synthase. Am Rev Resp Dis 1992; 145: A382.Google Scholar
  103. 103.
    Lilly CM, Martins MA, Drazen JM. Peptidase modulation of vasoactive intestinal peptide pulmonary relaxation in tracheal superfused guinea pig lungs. J Clin Invest 1993; 91: 235–43.PubMedCrossRefGoogle Scholar
  104. 104.
    Tare M, Parkington HC, Coleman HA, Neild TO, Dusting GJ. Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the epithelium. Nature 1990; 346: 69–71.PubMedCrossRefGoogle Scholar
  105. 105.
    Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT. Science 1989; 245: 177–80.PubMedCrossRefGoogle Scholar
  106. 106.
    Said SI. Vasoactive intestinal peptide [VIP] and related peptides as anti-asthma and anti-inflammatory agents. Biomed Res 1992; 13 [Suppl. 21: 257–62.Google Scholar
  107. 107.
    Berisha B, Pakbaz H, Absood A, Said SI. Nitric oxide as a mediator of oxidant lung injury due to paraquat. Proc Nat Acad Sci, 1994; 91: 7445–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Pakbaz H, Berisha H, Absood A, Foda HD, Said SI. Nitric oxide mediates oxidant tissue injury caused by paraquat and xanthine oxidase. Ann NY Acad Sci 1994; 723: 422–5.PubMedCrossRefGoogle Scholar
  109. 109.
    Paul S, Said SI. Characterization of receptors for vasoactive intestinal peptide solubilized from the lung. J Bio Chem 1987; 262: 158–62.Google Scholar
  110. 110.
    Patthi S, Simerson S, Veliçelebi G. Solubilization of rat lung vasoactive intestinal peptide receptors in the active state. Characterization of the binding properties and comparison with membrane-bound receptors. J Biol Chem 1988; 263: 19363–9.PubMedGoogle Scholar
  111. 111.
    Luis J, Said SI. Characterization of VIP- and helodermin-preferring receptors on human small cell carcinoma cell lines. Peptides 1990; 11: 1239–44.PubMedCrossRefGoogle Scholar
  112. 112.
    Leroux P, Vaudry H, Fournier A, St.-Pierre S, Pelletier G. Characterization and localization of vasoactive intestinal peptide receptors in the rat lung. Endocrinology 1984; 114: 1506–12.PubMedCrossRefGoogle Scholar
  113. 113.
    Lazarus SC, Basbaum CB, Barnes PJ, Gold WM. Mapping of VIP receptors by use of an immunocytochemical probe for the intracellular mediator cyclic AMP. Am J Physiol 1986; 251: C115–9.PubMedGoogle Scholar
  114. 114.
    Muller J-M, El Battari A, Ah-Kye E, Luis J, Ducret F, Pichon J, Marvaldi J. Internalization of the vasoactive intestinal peptide [VIP] in human adenocarcinoma cell line [HT29]. Eur J Biochem 1985; 152: 107–14.PubMedCrossRefGoogle Scholar
  115. 115.
    Omary MB, Kagnoff MF. Identification of nuclear receptors for VIP on a human colonic adenocarcinoma cell line. Science 1987; 238: 1578–81.PubMedCrossRefGoogle Scholar
  116. 116.
    Paul S, Ebaid M. Vasoactive intestinal peptide: Its interactions wth calmodulin and catalytic antibodies. Neurochem Int 1993; 23: 197–214.PubMedCrossRefGoogle Scholar
  117. 117.
    Couvineau A, Voisin T, Guijarro L, Laburthe M. Purification of vasoactive intestinal peptide receptor from porcine liver by a newly designed one-step affinity chromatography. J Biol Chem 1990; 265: 13386–90.PubMedGoogle Scholar
  118. 118.
    Ishihara T, Shigemoto R, Mori K, Takahashi K, Nagata S. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 1992; 8: 811–19.PubMedCrossRefGoogle Scholar
  119. 119.
    Sreedharan SP, Patel DR, Huang J-X, Goetzl ET. Cloning and functional expression of a human neuroendocirne vasoactive intestinal peptide receptor. Biochem Biophys Res Comm 1993; 193: 546–53.PubMedCrossRefGoogle Scholar
  120. 120.
    Lutz EM, Sheward WJ, West KM, Morrow JA, Fink G, Harmar AJ. The VIP2 receptor: Molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Letters 1993; 334: 3–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Bodanszky M, Klausner YS, Said SI. Biological activities of synthetic peptides corresponding to fragments of and to the entire sequence of the vasoactive intestinal peptide. Proc Nat Acad Sci 1973; 70: 382–4.PubMedCrossRefGoogle Scholar
  122. 122.
    Chakder S, Rattan S. The entire vasoactive intestinal polypeptide molecule is required for the activation of the vasoactive intestinal polypeptide receptor: Functional and binding studies on opossum internal anal sphincter smooth muscle. J Pharmacol Exp Ther 1993; 266: 392–9.PubMedGoogle Scholar
  123. 123.
    Turner AJ, Neuropeptides and their peptidases. Ellis Horwood Series in Biomedicine, Chichester, England, 1987.Google Scholar
  124. 124.
    Goosens J-F, Pommery N, Lohez M, Pommery J, Helbecque N, Cottelle P, Lhermitte M, Henichart J-P. Antagonistic effect of a vasoactive intestinal peptide fragment, vasoactive intestinal peptide [1–11], on guinea pig trachea smooth muscle relaxation. Mol Pharmacol 1992; 41: 104–9.Google Scholar
  125. 125.
    Pandol SJ, Dharmsathaphorn K, Schoeffield MS, Vale Y, Rivier J. Vasoactive intestinal peptide receptor antagonist [4C1-D-Pheb, Leu“] VIP. Am J Physiol 1986; 250: G553–7.PubMedGoogle Scholar
  126. 126.
    Grider JR, Rivier JR. Vasoactive intestinal peptide the gut: evidence from the use of selective VIP antagonists and VIP antiserum. J Pharmacol Exp Ther 1990; 253: 738–42.PubMedGoogle Scholar
  127. 127.
    Waelbroeck M, Robberecht P, Coy DH, Camus J-C, De Neep P, Christophe J. Interaction of growth-hormone-releasing factor (GRF) and 14 GRF analogs with vasoactive intestinal peptide (VIP) receptors of rat pancreas. Discovery of (N-Ac-Tyr, D-Phe2)GRF(1–29)-NH2 as a VIP antagonist. Endocrinology 1985; 116: 2643–59.Google Scholar
  128. 128.
    Gozwa I, Meltzer E, Rubinrout S, Brenneman DE, Fridkin M. Vasoactive intestinal peptide potentiates sexual behavior: inhibition by novel antagonist. Endocrinology 1989; 125: 2945–9.CrossRefGoogle Scholar
  129. 129.
    Christophe J. Type I receptors for PACAP (a neuropeptide even more important than VIP?). Biochim Biophys Acta 1993; 1154: 183–99.PubMedGoogle Scholar
  130. 130.
    Ganz P, Sandrock AW, Landis SC, Leopold J, Gimbrone Jr, MA, Alexander RW. Vasoactive intestinal peptide: vasodilation and cyclic AMP generation. Am J Physiol 1986; 250: H755–60.PubMedGoogle Scholar
  131. 131.
    Shreeve SM, DeLuca AW, Diehl NL, Kermode JC. Molecular properties of the vasoactive intestinal peptide receptor in aorta and other tissues. Peptides 1992; 13: 919–26.PubMedCrossRefGoogle Scholar
  132. 132.
    Robberecht P, Conlon P, Gardner JD. Interaction of porcine vasoactive intestinal peptide with dispersed pancreatic acinar cells from the guinea pig: structural requirements for effects of VIP an secretin on cellular cyclic AMP. J Biol Chem 1976; 251: 4635–9.PubMedGoogle Scholar
  133. 133.
    Dupont C, Laburthe M, Broyart JP, Bataille D, Rosselin G. Cyclic AMP production in isolated colonic epithelial crypts: a highly sensitive model for the evaluation of vasoactive intestinal peptide action in human intestine. Eur J Clin Invest 1980; 10: 67–76.PubMedCrossRefGoogle Scholar
  134. 134.
    Sakakibara H, Kouichiro S, Said SI. Characterization of vasoactive intestinal peptide [VIP] receptors on rat alveolar macrophages. Am J Physiol, 1994; 267: 256–62.Google Scholar
  135. 135.
    Maruno K, Said SI. Inhibition of human airway smooth muscle cell proliferation by vasoactive intestinal peptide (VIP). Am Rev Resp Dis 1993; 147: A253.Google Scholar
  136. 136.
    Gozes 1, Brenneman DE. VIP: molecular biology and neurobiological function. Mol Neurobiol 1989; 3: 201–26.PubMedCrossRefGoogle Scholar
  137. 137.
    Francis SH, Noblett BD, Todd BW, Wells JN, Corbin JD. Relaxation of vascular and tracheal smooth muscle by cyclic nucleotide analogs that preferentially activate purified cGMP-dependent protein kinase. Mol Pharmacol 1988; 34: 506–17.PubMedGoogle Scholar
  138. 138.
    Meisheri KD, Rüegg JC. Dependence of cyclic-AMP induced relaxation on Cat+ and calmodulin in skinned smooth muscle of guinea pig Taenia coli. Pflügers Archives 1983; 399: 315.CrossRefGoogle Scholar
  139. 139.
    Lincoln TM, Cornwell TL, Taylor AE. cAMP-dependent protein kinase mediates the reduction of Ca’- by cAMP in vascular smooth muscle cells. Am J Physiol 1990; 258: C399 - C407.PubMedGoogle Scholar
  140. 140.
    De Lanerolle P, Paul RJ. Myosin phosphorylation/dephosphorylation and regulation of airway smooth muscle contractility. Am J Physiol 1991; 261: L1 - L14.PubMedGoogle Scholar
  141. 141.
    Gerthoffer WT. Regulation of the contractile element of airway smooth muscle. Am J Physiol 1991; 261: L15 - L28.PubMedGoogle Scholar
  142. 142.
    Audigier S, Barberis C, Jard S. Vasoactive intestinal polypeptide increases inositol phosphate breakdown in the rat superior cervical ganglion. Ann NY Acad Sci 1988; 527: 579–81.CrossRefGoogle Scholar
  143. 143.
    Malhotra RK, Wakade TD, Wakade AR. Vasoactive intestinal polypeptide and mus-carine mobilize intracellular Cat-through breakdown of phosphoinositides to induce catecholamine secretion. J Biol Chem 1988; 263: 2123–6.PubMedGoogle Scholar
  144. 144.
    Tatsuno I, Yada T, Vigh S, Hidaka H, Arimura A. Pituitary adenylate cyclase activating polypeptide and vasoactive intestinal peptide cytosolic free calcium concentration in cultured rat hippocampal neurons. Endocrinology 1992; 131: 73–81.PubMedCrossRefGoogle Scholar
  145. 145.
    Gressens P, Hill JM, Gozes I, Fridkin M, Brenneman DE. Growth factor function of vasoactive intestinal peptide in whole cultured mouse embryos. Nature 1993; 362: 155–8.PubMedCrossRefGoogle Scholar
  146. 146.
    Sand O, Chen B, Li Q, Karlsen HE, Bjoro T, Haug E. Vasoactive intestinal peptide [VIP] may reduce the removal rate of cytosolic Cat+ after transient elevations in clonal rat lactotrophs. Acta Physiol Scand 1989; 137: 113–23.PubMedCrossRefGoogle Scholar
  147. 147.
    Andersson M, Carlquist M, Maletti M, Marie JC. Simultaneous solubilization of high-affinity receptors for VIP and glucagon and of a low-affinity binding protein for VIP, shown to be identical to calmodulin. FEBS Letters 1993; 318: 35–40.PubMedCrossRefGoogle Scholar
  148. 148.
    Stallwood D, Brugger CH, Baggenstoss BA, Stemmer PM, Shiraga H, Landers DF, et al Identity of a membrane-bound vasoactive intestinal peptide-binding protein with calmodulin. J Biol Chem 1992; 267: 19617–21.PubMedGoogle Scholar
  149. 149.
    Said SI. Vasoactive intestinal peptide: its interactions with calmodulin and catalytic antibodies. Neurochem Int 1993; 23: 197–214.CrossRefGoogle Scholar
  150. 150.
    Grider JR. Interplay of VIP and nitric oxide in regulation of the descending relaxation phase of peristalsis. Am J Physiol 1993; 264: G334–40.PubMedGoogle Scholar
  151. 151.
    He XD, Goyal RJ. Nitric oxide involvement in the peptide VIP-associated inhibitory junction potential in the guinea-pig ileum. J Physiol 1993; 461: 485–99.PubMedGoogle Scholar
  152. 152.
    Huizinga JD, Tomlinson J, Pintin-Quezada J. Involvement of nitric oxide in nerve-mediated inhibition and action of vasoactive intestinal peptide in colonic smooth muscle. J Pharmacol Exp Ther 1992; 260: 803–8.PubMedGoogle Scholar
  153. 153.
    Jin J-G, Murthy KS, Grider JR, Makhlouf GM. Activation of distinct cAMP- and cGMP-dependent pathways by relaxant agents in isolated gastric muscle cells. Am J Physiol 1993; 264: G470–7.PubMedGoogle Scholar
  154. 154.
    Murthy KS, Zhang K-M, Jin J-G, Grider JR, Makhlouf GM. VIP-mediated G protein-coupled Cat// influx activates a constitutive NOS in dispersed gastric muscle cells. Am J Physiol 1993; 265: G660 71.Google Scholar
  155. 155.
    Grider JR, Jin J-G. Vasoactive intestinal peptide release and L-citrulline production from isolated ganglia of the myenteric plexus: evidence for regulation of vasoactive intestinal peptide release by nitric oxide. Neurosci 1993; 54: 521–6.CrossRefGoogle Scholar
  156. 156.
    Spessert R. Vasoactive intestinal peptide stimulation of cyclic guanosine monophosphate formation: further evidence for a role of nitric oxide synthase and cytosolic guanylate cyclase in rat pinealocytes. Endocrinology 1993; 132: 2513–7.PubMedCrossRefGoogle Scholar
  157. 157.
    Lilly CM, Stamler JS, Gaston B, Meckel C, Loscalzo J, Drazen JM. Modulation of vasoactive intestinal peptide pulmonary relaxation by NO in tracheally superfused guinea pig lungs. Am J Physiol 1993; 265: L4I0–5.Google Scholar
  158. 158.
    Murad F, Mittal CK, Arnold WP, Katsuki S, Kimura H. Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucl Res 1978; 9: 145–58.Google Scholar
  159. 159.
    Orange RP, Austen WG, Austen KF. Immunological release of histamine and slow-reacting substance of anaphylaxis from human lung. I. Modulation by agents influencing cellular levels of cyclic 3’,5’-adenosine monophosphate. J Exp Med 1971; 136–48.Google Scholar
  160. 160.
    Katsuki S, Murad F. Regulation of adenosine cyclic 3’,5’-monophosphate and guanosine cyclic 3’,5’-monophosphate levels and contractility in bovine tracheal smooth muscle. Mol Pharmacol 1977; 13: 330–41.PubMedGoogle Scholar
  161. 161.
    Pfitzer G, Hofmann F, DiSalvo J, Ruegg JC. cGMP and cAMP inhibit tension development in skinned coronary arteries. Pflügers Arch 1984; 401: 277–80.PubMedCrossRefGoogle Scholar
  162. 162.
    Anderson MP, Gregory RJ, Thompson S, Souza DW, Paul S, Mulligan RC, et al Demonstration that CFTR is a chloride channel by alteration of its anion channel selectivity. Science 1991; 253: 202–5.PubMedCrossRefGoogle Scholar
  163. 163.
    Kume H, Hall IP, Washabau RJ, Takagi K, Kotlikoff M. ß-adrenergic agonist regulate KCa channels in airways smooth muscle by cyclic AMP-dependent and -independent mechanisms. J Clin Invest 1994; 93: 371–9.PubMedCrossRefGoogle Scholar
  164. 164.
    Kase H, Wakui M, Petersen OH. Stimulatory and inhibitory actions of VIP and cyclic AMP on cytoplasmic Cat+ signal generation in pancreatic acinar cells. Pflügers Archives 1991; 419: 668–70.CrossRefGoogle Scholar
  165. 165.
    Caughey GH, Leidig F, Viro NF, Nadel JA. Substance P and vasoactive intestinal peptide degradation by mast-cell tryptase and chymase. J Pharmacol Exp Ther 1988; 244: 133–7.PubMedGoogle Scholar
  166. 166.
    Tam EK, Caughey GH. Degradation of airway neuropeptides by human lung tryptase. Am J Resp Cell Mol Biol 1990; 3: 27–32.Google Scholar
  167. 167.
    Goetz] EJ, Sreedharan SP, Turck CW, Bridenbaugh R, Malfroy B. Preferential cleavage of amino-and carboxyl-terminal oligopeptides from vasoactive intestinal polypeptide by human recombinant enkephalinase [neutral endopeptidase, EC 3.4.24.11]. Biochem Biophys Res Comm 1989; 158: 850–4.CrossRefGoogle Scholar
  168. 168.
    Franconi G, Graf PD, Lazarus SC, Nadel JA, Caughey GH. Mast-cell tryptase and chymase reverse airway smooth muscle relaxation induced by vasoactive intestinal peptide in the ferret. J Pharmacol Exp Ther 1989; 248: 947–51.PubMedGoogle Scholar
  169. 169.
    Hachisu M, Hiranuma T, Tani S, Iizuka T. Enzymatic degradation of helodermin and vasoactive intestinal polypeptide. J Pharmacobiol Dyn 1990; 14: 126–31.CrossRefGoogle Scholar
  170. 170.
    Lilly CM, Kobzik L, Hall AE, Drazen JM. Effects of chronic airway inflammation on the activity and enzymatic inactivation of neuropeptides in guinea pig lungs. J Clin Invest 1994; 93: 2667–74.PubMedCrossRefGoogle Scholar
  171. 171.
    Coburn RF, Tomita T. Evidence for nonadrenergic inhibitory nerves in guinea pig trachealis muscle. Am J Physiol 1973; 224: 1072–80.PubMedGoogle Scholar
  172. 172.
    Richardson J, Beland J. Nonadrenergic inhibitory nervous system in human airways. J Appl Physiol 1976; 41: 764–71.PubMedGoogle Scholar
  173. 173.
    Kubota E, Hamasaki Y, Sata T, Said SI. Autonomic innervation of pulmonary artery: evidence for a NANC inhibitory system. Exp Lung Res 1988; 14: 349–58.PubMedCrossRefGoogle Scholar
  174. 174.
    Russell JA. Nonadrenergic inhibitory innervation in canine airways. J Appl Physiol 1980; 48: 16–22.PubMedGoogle Scholar
  175. 175.
    Said SI. Peptides common to the nervous system and the gastrointestinal tract. In Martini L, Ganong WF, editors. Frontiers in Neuroendocrinology Vol. 6, New York: Raven Press, 1980: 293–331.Google Scholar
  176. 176.
    Lundberg JM, Hökfelt T, Nilsson G, Terenius L, Rehfeld J, Edle R, Said SI. Peptide neurons in the vagus, splanchnic, and sciatic nerves. Acta Physiol Scand 1978; 104: 499–501.PubMedCrossRefGoogle Scholar
  177. 177.
    Irvin CG, Boileau R, Tremblay J, Martin RR, Macklem PT. Bronchodilation: Noncholinergic, nonadrenergic mediation demonstrated in vivo in the cat. Science 1980; 207: 791–2.PubMedCrossRefGoogle Scholar
  178. 178.
    Venugopalan GS, Said SI, Drazen JM. Effect of vasoactive intestinal peptide on vagally mediated tracheal pouch relaxation. Resp Physiol 1984; 56: 205–16.CrossRefGoogle Scholar
  179. 179.
    Matsuzaki Y, Hamasaki Y, Said SI. Vasoactive intestinal peptide: A possible transmitter of non-adrenergic relaxation of guinea pig airways. Science 1980; 210: 1252–3.PubMedCrossRefGoogle Scholar
  180. 180.
    Mutt V, Said SI. Structure of the porcine vasoactive intestinal octacosapeptide: the amino acid sequence: use of kallikrein in its determination. Eur J Biochem 1974; 42: 581–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Diamond L, Altiere RJ. Airway nonadrenergic noncholinergic inhibitory nervous system. In: Kaliner MA, Barnes P, editors. The Airways: Neural Control in Health and Disease. In Lenfant C, executive editor. Lung Biology in Health and Disease. New York: Marcel Dekker, 1988; 343–94.Google Scholar
  182. 182.
    Belvisi M, Stretton D, Verleden GM, Yacoub M, Barnes PJ. Nitric oxide is the endogenous transmitter of bronchodilator nerves in humans. Eur J Pharmacol 1992; 210: 221–2.PubMedCrossRefGoogle Scholar
  183. 183.
    Bai TR, Bramley AM. Effect of an inhibitor of nitric oxide synthase on neural relaxation of human bronchi. Am J Physiol 1993; 264: L425–30.PubMedGoogle Scholar
  184. 184.
    Boeckxstaens GE, Pelckmans PA, De Man JG, Bult H, Herman AG, Van Maercke YM. Evidence for differential release of nitric oxide and vasoactive intestinal polypeptide by nonadrenergic noncholinergic nerves in the rat gastric fundus. Arch Int Pharmacodyn Ther 1992; 318: 107–15.PubMedGoogle Scholar
  185. 185.
    Lei YH, Barnes PJ, Rogers DF. Inhibition of neurogenic plasma exudation in guinea pig airways by CP-96,345 a new non-peptide NK-1 receptor antagonist. Br J Pharmacol 1992; 105: 261–2.PubMedGoogle Scholar
  186. 186.
    Fisher JT, Anderson JW, Waldron MS. Nonadrenergic noncholinergic neurotransmitter of feline trachealis: VIP or nitric oxide? J Appl Physiol 1993; 74: 31–9.PubMedCrossRefGoogle Scholar
  187. 187.
    Brandtzaeg P, Oktedalen O, Kierulf P, Opstad PK. Elevated VIP and endotoxin plasma levels in human gram-negative septic shock. Regulatory Peptides 1989; 24: 37–44.PubMedCrossRefGoogle Scholar
  188. 188.
    Revhaug A, Lygren I, Jenssen TG, Giercksky K-E, Burhol PG. Vasoactive intestinal peptide in sepsis and shock. Ann NY Acad Sci 1988; 527: 536–45.PubMedCrossRefGoogle Scholar
  189. 189.
    Modlin IM, Bloom SR, Mitchell S. Plasma vasoactive intestinal polypeptide (VIP) levels and intestinal ischaemia. Experienta 1978; 34: L535–6.CrossRefGoogle Scholar
  190. 190.
    Pakbaz H, Liu L-W, Foda HD, Berisha H, Said SI. Vasoactive intestinal peptide (VIP) as a modulator of PAF-induced lung injury. Clin Res 1988; 36: 626A.Google Scholar
  191. 191.
    Said SI. VIP and messenger plasticity. Trends Neurosci 1994; 17: 339.PubMedCrossRefGoogle Scholar
  192. 192.
    Chander A, Fisher AB. Regulation of lung surfactant secretion. Am J Physiol 1990; 258: L241–53.PubMedGoogle Scholar
  193. 193.
    Mendelson CR, Boggaram V. Hormonal control of the surfactant system in fetal lung. Ann Rev Physiol 1991; 53: 415–40.CrossRefGoogle Scholar
  194. 194.
    Wright JR. Regulation of pulmonary surfactant secretion and clearance. Ann Rev Physiol 1991; 53: 395–414.CrossRefGoogle Scholar
  195. 195.
    Said SI. Vasoactive intestinal peptide and the lung. In Bloom SR, Polak JM, Lindenlaub E, editors. Systemic Role of Regulatory Peptides. New York: F.K. Schattauer Verlag, 1982: 293–300.Google Scholar
  196. 196.
    Quinton PM, Bijman J. Higher bioelectrical potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis. New Engl J Med 1983; 308: 1185–9.PubMedCrossRefGoogle Scholar
  197. 197.
    Said SI, Heinz-Erian P. VIP and exocrine function: possible role in cystic fibrosis. In Mastella G, Quinton PM, editors. Cellular and Molecular Basis of Cystic Fibrosis. San Francisco, CA: San Francisco Press, 1988: 355–61.Google Scholar
  198. 198.
    Amiranoff B, Rosselin G. VIP receptors and control of cyclic AMP production. In Said SI, editor. Vasoactive Intestinal Peptide. New York: Raven Press, 1982: 307–22.Google Scholar
  199. 199.
    Heinz-Erian P, Flux M, Dey RD, Said SI. Deficient vasoactive intestinal peptide innervation in sweat glands of cystic fibrosis patients. Science 1985; 229: 1407–8.PubMedCrossRefGoogle Scholar
  200. 200.
    Richardson JB, Nerve supply to the lungs. Am Rev Resp Dis 1979; 119: 785–802.PubMedGoogle Scholar
  201. 201.
    Said SI. VIP as a modulator of lung inflammation and airway constriction. Am Rev Resp Dis 1991; 143: S22 - S24.PubMedGoogle Scholar
  202. 202.
    Morice A, Unwin RJ, Sever PS. Vasoactive intestinal peptide causes bronchodilatation and protects against histamine-induced bronchoconstriction in asthmatic subjects. Lancet 1983; 11 /26: 1225–6.CrossRefGoogle Scholar
  203. 203.
    Barnes PJ, Dixon CMS. The effect of inhaled vasoactive intestinal peptide on bronchial reactivity to histamine in humans. Am Rev Resp Dis 1984; 130: 162–6.PubMedGoogle Scholar
  204. 204.
    Bundgaard A, Enehjelm SD, Aggestrup S. Pretreatment of exercise-induced asthma with inhaled vasoactive intestinal peptide (VIP). Eur J Resp Dis 1983; 64: 427–9.Google Scholar
  205. 205.
    Mojarad M, Grode TL, Cox CP, Kimmel G, Said SI. Differential responses of human asthmatics to inhaled vasoactive intestinal peptide (VIP). Am Rev Resp Dis 1985; 131: A281.Google Scholar
  206. 206.
    Bolin DR, Cottrel J, Garippa R, O’Neill N, Simko B, O’Donnell M. Structure-activity studies of vasoactive intestinal peptide [VIP]: cyclic disulfide analogs. Int J Peptide Prot Res 1993; 41: 124–32.CrossRefGoogle Scholar
  207. 207.
    Jaeger E, Remmer HA, Abdel-Razek TT, Said SI. Structure activity studies on VIP-11, synthesis of analogues modified at positions Arg’2, Arg14-Lys’5, Met“ and Lys2°-Lys2’, including a potent VIP/PHM-hybrid. In Rosselin G, editor. VIP, PACAP, and Related Regulatory Peptides. River Edge, NJ: World Scientific, 1994: 89–92.Google Scholar
  208. 208.
    Pavlou TA, Bergofsky EH, Dervan JP, Absood A, Said SI. Infusion of vasoactive intestinal peptide improves hemodynamics in primary pulmonary hypertension. Am Rev Resp Dis 1993; 147: A536.Google Scholar
  209. 209.
    Maruno K, Absood A, Said SI. In vivo inhibition of human small cell lung carcinoma (SCLC) tumors by vasoactive intestinal peptide (VIP). Am Rev Resp Dis 1994; 149: A174.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1995

Authors and Affiliations

  • Sami I. Said
    • 1
    • 2
  1. 1.Department of Veterans AffairsMedical Center at NorthportNew YorkUSA
  2. 2.University Medical CenterStony BrookUSA

Personalised recommendations