Skip to main content

Sodium/Hydrogen Exchange

  • Chapter
  • 58 Accesses

Part of the book series: Respiratory Pharmacology and Pharmacotherapy ((RPP))

Abstract

The Na+/H+ exchanger (formerly antiporter) is widely distributed in nature as a component of the cell membrane. The cytosolic pH of tracheal smooth muscle, similar to many other mammalian tissues, is regulated by at least three known sarcolemmal processes. These processes include 1) the Na+/H+ exchanger, 2) the anion transporter requiring Cl/HCO3 and 3)H+ extruding, sodium-dependent anion transporter (Figure 1). The two sodium-dependent processes alkalinize the cells while the anion exchanger acidifies alkalotic cells. Together, these pH regulating systems maintain the cytosolic pH (intracellular pH, pHi) at a much higher value (7.0 to 7.3) than would be predicted by thermodynamic equilibrium calculated from the Nernst equation based on the membrane potential and passive distribution of H+ across the cell membrane. For example the resting membrane potential (Em) of canine tracheal smooth muscle was found to be —60 ± 1 mV [1]. Based on this, the calculated pH value at 37°C is expected to be 6.42, 0.6 pH units lower than the observed resting pHi, for adult canine trachealis. In sodium-free Hepes-buffered medium the pHi of the tracheal muscle is decreased by 0.5 pH unit [2]. Thus sodium-dependent intracellular pH regulating mechanisms are important in this tissue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Farley JM, Miles PR. Role of depolarization in acetylcholine-induced contractions of dog trachealis muscle. J Pharmacol Exper Therap 1977; 201: 199–205.

    CAS  Google Scholar 

  2. Krampetz IK, Bose R. Importance of the Na+/H+ antiporter in intracellular pH regulation of canine tracheal smooth muscle. Prog Clin Biol Res 1990; 327: 703–10.

    PubMed  CAS  Google Scholar 

  3. Aickin CC. Intracellular pH regulation by vertebrate muscle. Ann Rev Physiol 1986; 48: 349–61.

    Article  CAS  Google Scholar 

  4. McCabe RD, Young DB. Evidence of a K+-H+-ATPase in vascular smooth muscle cells. Am J Physiol 1992; 262: H1955–8.

    PubMed  CAS  Google Scholar 

  5. Milanick MA. Proton fluxes associated with Cat* in human red blood cells. Am J Physiol 1990; 258: C552–62.

    PubMed  CAS  Google Scholar 

  6. Acevedo M, Steele LW. Na“ /FT’ exchanger in isolated epithelial tracheal cells from sheep. Involvement in tracheal proton secretion. Exp Physiol 1993; 78: 383–94.

    PubMed  CAS  Google Scholar 

  7. Nord EP, Brown SES, Crandall ED. Characterization of Na“ /II” antiport in type II alveolar epithelial cells. Am J Physiol 1987; 252: C490–8.

    PubMed  CAS  Google Scholar 

  8. Grinstein S, ed. Na+/H+ exchange, Pub CRC press, Boca Raton, Fl, USA, 1988. (Vaughan-Jones RD, pH-selective microelectrodes, Vaughan-Jones, 3–20; Okerlund LS and Gillies RJ, Measurement of pH and Na’ by nuclear magnetic resonance, 22 —45).

    Google Scholar 

  9. Wray S, Smooth muscle intracellular pH: measurement, regulation and function. Am J Physiol. 1988; 254: C213–25.

    PubMed  CAS  Google Scholar 

  10. Aronson PS. Kinetic properties of the plasma membrane Na“ /H+ exchanger. Annu Rev Physiol 1985; 47: 545–60.

    Article  PubMed  CAS  Google Scholar 

  11. Yu J, Zheng J, Ong BY, Bose R. Intracellular pH measurement with fluorescent dye in canine basilar artery. Blood Vessels 1991; 28: 464–74.

    PubMed  CAS  Google Scholar 

  12. Grinstein S, Rothstein A. Mechanism of regulation of Na*/H+ exchanger. J Mem Biol 1986; 90: 1–12.

    Article  CAS  Google Scholar 

  13. Aickin CC, Thomas RC. An investigation of ionic mechanism of intracellular pH regulation in mouse soleus muscle fibers. J Physiol 1977; 273: 295–316.

    PubMed  CAS  Google Scholar 

  14. Austin C, Wray S. Changes of intracellular pH in rat mesentric vascular smooth muscle with high-K+ depolarization. J Physiol 1993; 469: 1–10.

    PubMed  CAS  Google Scholar 

  15. Kleyman TR, Cragoe ER. Amiloride and its analogs as tools in the study of ion transport. J Mem Biol 1988; 105: 1–21.

    Article  CAS  Google Scholar 

  16. Niggli E, Lederer WJ. Molecular operations of the sodium-calcium exchanger revealed by conformation currents. Nature 1991; 349: 621–24.

    Article  PubMed  CAS  Google Scholar 

  17. Scholz W, Albus U, Lang JH, Linz W, Martorana PA, Englert HC, Scholkens BA. Hoe 694, a new Na+/H+ exchange inhibitor and its effects in cardiac ischaemia. Br J Pharmacol 1993; 109: 562–8.

    PubMed  CAS  Google Scholar 

  18. Orlowski J. Heterogeneous expression of functional properties of amiloride high affinity (NHE-l) and low affinity (NHE-3) isoforms of the rat Na+/H+ exchanger. J Biol Chem 1993; 268: 16369–77.

    PubMed  CAS  Google Scholar 

  19. Bose R, Yu J, Cragoe EJ. Excitation-contraction coupling in tracheal smooth muscle studied with specific inhibitors of Na+ channel and Na +/H+ antiporter. Physiologist 1989; 32: 181.

    Google Scholar 

  20. Bose R, Yu J, Cragoe EJ, Delaive J. Cytosolic pH changes in contracting canine trachealis smooth muscle. Prog Clin Biol Res 1990; 327: 695–702.

    PubMed  CAS  Google Scholar 

  21. Battisini B, Filep JG, Cragoe EJ, Fournier A, Sirois P. A role for Na+/H+ exchange in contraction of guinea pig airways by endothelin-1 in vitro. Biochem Biophys Res Comm 1991; 175: 583–88.

    Article  Google Scholar 

  22. Guia A, Bose R. Effects of extracellular acidosis on the action of smooth muscle relaxants. Proc West Pharmacol Soc 1990; 33: 77–84.

    PubMed  CAS  Google Scholar 

  23. Yu J, Guia A, Mink S, Kepron W, Cragoe EJ, Bose R. Role of sodium in antigen-induced contraction of tracheal muscle in dogs. Respir Physiol. 1993; 91: 111–24.

    Article  PubMed  CAS  Google Scholar 

  24. Black PN, Ghatei MA, Bretherton-Watl D, Takahashi K, Krause T, Bloom SR. Endothelin is formed by cultured tracheal epithelial cells. Am Rev Respir Dis 1989; 139: (Suppl): A52.

    Article  Google Scholar 

  25. Springall DR, Howarth PT, Counihan H, Djukanovic R, Holgate ST, Polak JM. Endothelin immunoreactivity of airway epithelium in asthamatic patients. Lancet 1991; 337: 697–701.

    Article  PubMed  CAS  Google Scholar 

  26. Noveral JP, Rosenberg SM, Anbar RA, Pawlowski NA, Grunstein MM. Role of endothelin-1 in regulating proliferation of cultured rabbit airway smooth muscle cells. Am J Physiol 1992; 263: L317–24.

    PubMed  CAS  Google Scholar 

  27. Shaw AM, Steele LW, Butcher PA, Ward MR, Olver RE. Sodium-proton exchange across the apical membrane of the alveolar type II cell of fetal sheep. Biochim Biophys Acta 1990; 1028: 9–13.

    Article  PubMed  CAS  Google Scholar 

  28. Tse CM, Levine SA, Yun CH, Brant SR, Pouyssegur J, Montrose MH, et al. Functional characteristics of a cloned epithelial Na+/H+ exchanger (NHE3): resistance to amiloride and inhibition by protein kinase C. Proc Natl Acad Sci 1993; 90: 9110–4.

    Article  PubMed  CAS  Google Scholar 

  29. Weinman EJ, Shenolikar S. Regulation of the renal brush border membrane Na+/H+ exchanger. Annu Rev Physiol 1993; 55: 289–304.

    Article  PubMed  CAS  Google Scholar 

  30. Sardet C, Franchi A, Pouyssegur J. Molecular cloning, primary structure, and expression of human growth factor activatable Na+/H+ antiporter. Cell 1991; 56: 271–80.

    Article  Google Scholar 

  31. Aronson PS, Nee J, Suhm MA. Modifier role of internal H+ in activating the Na in renal microvillus membrane vesicles. Nature 1982; 299: 161–63.

    Article  PubMed  CAS  Google Scholar 

  32. Rood RP, Emmer E, Wslok J, McCullen J, Hussain Z, et al. Regulation of rabbit ileal brush border Na+/H+ exchanger by ATP requiring Ca’ /calmodulin mediated process. J Clin Invest 1988; 82: 1091–97.

    Article  PubMed  CAS  Google Scholar 

  33. Burns KD, Homma T, Harris RC. Calmodulin antagonism inhibits basolateral and activates apical Na+/H+ exchange in LLC-PK/C14. J Am Soc Nephrol 1990; 1: 714.

    Google Scholar 

  34. Wu M, Tseng Y. The modulatory effects of endothelin-1, carbachol and isoprenaline upon Na+/H+ exchange in dog cardiac purkinje fibers. J Physiol 1993; 471: 583–97.

    PubMed  CAS  Google Scholar 

  35. Alvarez J, Garcia-Sancho J, Mollinedo F, Sanchez A. Intracellular Ca’ + potentiates Na+/H-’ exchange and cell differentiation induced by phorbol ester in U937 cells. Eur J Biochem 1989; 183: 709–14.

    Article  PubMed  CAS  Google Scholar 

  36. Danthuluri NR, Berk BC, Brock TA, Cragoe EJ, Deth RC. Protein Kinase C-mediated intracellular alkalinization in rat and rabbit aortic smooth muscle cells. Eur J Pharmacol 1987; 141: 503–6.

    Article  PubMed  CAS  Google Scholar 

  37. Hall IP, Chilvers ER. Inositol phosphate and airway smooth muscle. Pulmonary Pharmacol, 1989; 2: 113–20.

    Article  CAS  Google Scholar 

  38. Schramm CM, Grunstein MM. Mechanism of protein kinase C regulation of airway contractility. J Appl Physiol 1989; 66: 1935–41.

    Article  PubMed  CAS  Google Scholar 

  39. Vigne P, Breittmayer JP, Frelin C, Lazdunski M. Dual control of intracellular pH in aortic smooth muscle cells by a cyclic AMP-sensitive HCO3-/C1- antiporter and a protein kinase C-sensitive Na+/H+ antiporter. J Biol Chem 1988; 263: 18023–8.

    PubMed  CAS  Google Scholar 

  40. Mitsuka M, Berk BC. Long term regulation of Na+/H+ exchange in vascular smooth muscle cell: role protein kinase C. Am J Physiol 1991; C562–9.

    Google Scholar 

  41. Krapf R, Pearce D, Lynch C, Xi XP, Reudelhuber TL, Pouyseggur J, Rector FC. Expression of rat renal Na/H antiporter mRNA levels in response to respiratory and metabolic acidosis. J Clin Invest 1991; 87: 747–51.

    Article  PubMed  CAS  Google Scholar 

  42. Sterling GM. The mechanism of bronchoconstriction due to hypocapnia in man. Clin. Sci. 1968; 34: 277–85.

    PubMed  CAS  Google Scholar 

  43. Duckles SP, Raynor MD, Nadel JA. Effect of CO2 and pH on drug-induced contraction of airway smooth muscle. J Pharmacol Exp Ther 1974; 190: 472–81.

    PubMed  CAS  Google Scholar 

  44. Sterling GM, Holst PE, Nadel JA. Effect of CO2 and pH on bronchoconstriction caused by serotonin vs acetylcholine. J Appl Physiol 1972; 32: 39–43.

    PubMed  CAS  Google Scholar 

  45. Stephens NL, Mitchell RW. Mechanism of action of respiratory acidosis on tracheal smooth muscle. Am J Physiol 1974; 227: 647–51.

    PubMed  CAS  Google Scholar 

  46. Uchida Y, Ninomiya H, Saotome M, Nonomura A, Ohtsuka M, Yanagisawa M, et al. Endothelin, a novel constrictor peptide, as a potent bronchoconstrictor. Eur J Pharmacol 1988; 154: 227–8.

    Article  PubMed  CAS  Google Scholar 

  47. Aalkjaer C, Cragoe EJ. Intracellular pH regulation in resting and contracting segments of rat mesentric resistance vessels. J Physiol 1988; 402: 391–410.

    PubMed  CAS  Google Scholar 

  48. Taggart M, Wray S. Simultaneous measurement of intracellular pH and contraction in uterine smooth muscle. Pflugers Arch 1993; 423: 527–9.

    Article  PubMed  CAS  Google Scholar 

  49. Halle DC, Peces R, Lapointe MS, Ye M, Daugirdas JT. Cytosolic free calcium regulation in response to acute changes in intracellular pH in vascular smooth muscle. Am J Physiol 1993; 264: C932–43.

    Google Scholar 

  50. Putnam RW. pH Regulatory transport systems in a smooth muscle like cell line. Am J Physiol 1990; C470–9.

    Google Scholar 

  51. Jensen PE, Hughes A, Boonen HCM, Aalkjaer C. Force, membrane potential, and [Ca2+], during activation of rat mesentric small arteries with norepinephrine, potassium, aluminum fluoride and phorbol ester. Effect of changes in pH,. Circ Res 1993; 73: 314–24.

    PubMed  CAS  Google Scholar 

  52. Kume H, Takagi K, Satake T, Tokuno H, Tornita T. Effects of intracellular pH on calcium-activated potassium channels in rabbit tracheal smooth muscle. J Physiol 1990; 424: 445–57.

    PubMed  CAS  Google Scholar 

  53. Raeburn D. Effect of altered availability of Na+ on guinea-pig airway smooth muscle contractility. Pulmon. Pharmacol. 1990; 3: 121–7.

    Article  CAS  Google Scholar 

  54. Krampetz IK, RA. Intracellular pH: effect on pulmonary arterial smooth muscle. Am J Physiol 1991; 260: L516–21.

    PubMed  CAS  Google Scholar 

  55. Danthuluri NR, Deth R. Effect of intracellular alkalinization on resting and agonist-induced vascular tone. Am J Physiol 1989; 256: H867–75.

    PubMed  CAS  Google Scholar 

  56. Krampetz IK, Bose R. Relaxant effect of amiloride on canine tracheal smooth muscle. J Pharmacol Exper Therap 1988; 246: 641–48.

    CAS  Google Scholar 

  57. Ozaki H, Kwon SC, Tajimi M, Karaki H. Stimulants and relaxants in canine tracheal smooth muscle. Pfluger Arch 1990; 416: 351–9.

    Article  CAS  Google Scholar 

  58. Chilvers ER, Challiss RA, Willcocks Al, Potter BV, Barnes PJ, Nahorski SR. Characterization of stereospecific binding sites for inositol 1,4,5-triphosphate in airway smooth muscle. Br J Pharmacol. 1990; 99: 297–302.

    PubMed  CAS  Google Scholar 

  59. Mrwa U, Achtig I, Ruegg JC. Influences of calcium concentration and pH on tension development and ATPase activity of the arterial actomyosin contractile system. Blood Vessels 1974; 11: 277–86.

    PubMed  CAS  Google Scholar 

  60. Bose R, Stephens NL. Mechanism of action of hypoxia. Role of contractile proteins. In: Stephens NL, editor. Biochemistry of Smooth Muscle. Univ. Park Press. 1977: 499–512.

    Google Scholar 

  61. Grover AK, Sampson SE. Pig coronary artery smooth muscle: Substrate and pH dependence of the two calcium pumps. Am J Physiol 1986; 20: C529–34.

    Google Scholar 

  62. Loutzenhiser R, Matsumoto Y, Okawa W, Epstein M. H“ induced vasodilation of rat aorta is mediated by alterations in intracellular calcium sequestration. Circ Res 1990; 67: 426–39.

    PubMed  CAS  Google Scholar 

  63. Fry CH, Liston TG, Cole RS. The effect of pH on urinary tract smooth muscle function. Prog Clin Biol Res 1990; 327: 717–23.

    PubMed  CAS  Google Scholar 

  64. Irisawa H, Sato R. Intra-and extracellular actions of protons on the calcium current of isolated guinea pig ventricular cells. Circ Res. 1986; 59: 348–55.

    PubMed  CAS  Google Scholar 

  65. Moolenaar WH. Effect of growth factors on intracellular pH regulation. Ann Rev Physiol 1986; 48: 363–76.

    Article  CAS  Google Scholar 

  66. James AL, Pare PD, Hogg JC. The mechanics of airway narrowing in asthma. Am Rev Resp Dis 1989; 139: 242–6.

    Article  PubMed  CAS  Google Scholar 

  67. Huot SJ, Aronson PS. Na+/H+ exchanger and its role in essential hypertension and diabetes mellitus. Diabetes Care 1991; 14: 521–35.

    Article  PubMed  CAS  Google Scholar 

  68. Kranzhofer R, Schirmer J, Schomig A, von Hodenberg E, Pestel E, Metz J, et al. Suppression of neointimal thickening and smooth muscle cell proliferation after arterial injury in rat by inhibitors of Na“ /F1” exchange. Circ Res 1993; 73: 264–8.

    PubMed  CAS  Google Scholar 

  69. Mitsuka M, Nagae M, Berk BC. Na+/H+ exchange inhibitors decrease neointimal formation after rat carotid injury. Circ Res 1993; 73: 269–75.

    PubMed  CAS  Google Scholar 

  70. Smith PR, Benos DJ. Epithelial Na’ channels. Annu Rev Physiol 1991; 53: 509–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Bose, R. (1995). Sodium/Hydrogen Exchange. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle: Peptide Receptors, Ion Channels and Signal Transduction. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7362-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7362-8_11

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7364-2

  • Online ISBN: 978-3-0348-7362-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics