Oxidative stress, antioxidants, aging and disease

  • L. Packer
Part of the Molecular and Cell Biology Updates book series (MCBU)

Summary

Individuals are exposed to oxidants from before the moment of birth. Sources are both exogenous and endogenous, with the latter being mainly from “leaks” in electron transport. Various antioxidant defenses have evolved to combat the constant oxidant load, but free radical damage inevitably accumulates with age. This has led to the Free Radical Theory of Aging, first formulated by Denham Harman. The theory states that the free radical load is the cause of general aging. It may also be the cause of specific diseases associated with aging, such as heart disease, cancer, and neurodegeneration. The latter presents a good case for oxidative involvement, especially in conditions such as Parkinson’s disease. Once aging is looked at in terms of free radical processes, strategies for retarding the aging process or decreasing the likelihood of aging-related diseases become apparent. These include decreasing exposure to free radical sources and bolstering antioxidant defenses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, Jr., J.D. and Odunze, I.N. (1991) Oxygen free radicals and Parkinson’s disease. Free Rad. Biol. Med. 10: 161–169.PubMedCrossRefGoogle Scholar
  2. Adelman, R., Saul, R.L. and Ames, B.N. (1988) Oxidative damage to DNA: relation to species metabolic rate and life span. Proc. Natl. Acad. Sci. USA 85: 2706–2708.PubMedCrossRefGoogle Scholar
  3. Ames, B.N. and Shigenaga, M.K. (1992) Oxidants are a major contributor to aging. Ann. N.Y. Acad. Sci. 663: 85–96.PubMedCrossRefGoogle Scholar
  4. Ames, B.N., Cathcart, R., Schwiers, E. and Hochstein, P. (1981) Uric acid provides an antioxidant defense in humans against oxidant-and radical-caused aging and cancer: a hypothesis. Proc. Natl. Acad. Sci. USA 78: 6858–6862.PubMedCrossRefGoogle Scholar
  5. Ames, B.N., Shigenaga, M.K. and Hagen, T.M. (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 90: 7915–7922.PubMedCrossRefGoogle Scholar
  6. Black, H.S., Lenger, W.A., Phelps A.W. and Thornby, J.I. (1983) Influence of dietary lipid upon ultraviolet-light carcinogenesis. Nutri. and Cancer 5: 59–68.CrossRefGoogle Scholar
  7. Black, H.S., Lenger, W.A., Gerguis, J. and Thornby, J.I. (1985) Relation of antioxidants and level of dietary lipid to epidermal lipid peroxidation and ultraviolet carcinogenesis. Cancer Res. Dec. 45: 6254–6259.Google Scholar
  8. Block, G., Patterson, B. and Subar, A. (1992) Fruit, vegetables and cancer prevention: a review of the epidemiologic evidence. Nutr. Cancer 18: 1–29.PubMedCrossRefGoogle Scholar
  9. Boveris, A. and Cadenas, E. (1975) Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett. 54: 311–314.PubMedCrossRefGoogle Scholar
  10. Boveris, A. and Chance, B. (1973) The mitochondrial generation of hydrogen peroxide: general properties and effect of hyperbaric oxygen. Biochem. J. 134: 707–716.PubMedGoogle Scholar
  11. Branda, R.F., Sullivan, L.M., O’Neill, J.P., Falta, M.T., Nicklas, J.A., Hirsch, B., Vacek, P.M. and Albertini, R.J. (1993) Measurement of HPRT mutant frequencies in T-lymphocytes from healthy human populations. Mutat. Res. 285: 267–279.PubMedCrossRefGoogle Scholar
  12. Brunk, U.T., Jones, C.B. and Sohal, R.S. (1992) A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mutat. Res. 275: 395–403.PubMedGoogle Scholar
  13. Cadenas, E., Boveris, A., Ragan, C.I. and Stoppani, A.O.M. (1977) Production of superoxide radicals and hydrogen peroxide by NADPH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef heart mitochondria. Arch. Biochem. Biophys. 180: 248–257.PubMedCrossRefGoogle Scholar
  14. Carmeli, E. and Reznick, A.Z. (1994) The physiology and biochemistry of skeletal muscle atrophy as a function of age. Proc. Soc. Expt. Biol. Med. 206: 103–114.Google Scholar
  15. Casarett, G.W. (1964) Similarities and contrasts between radiation and time pathology. In: B.L. Strehler (ed.): Advances in Gerontology Research, Vol. 1, Clarendon Press, Oxford, pp 109–163.Google Scholar
  16. Cazevieille, C., Muller, A., Meynier, F. and Bonne, C. (1993) Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Rad. Biol. Med. 14: 389–395.PubMedCrossRefGoogle Scholar
  17. Cerutti, P.A. (1991) Oxidant stress and carcinogenesis. Eur. J. Clin. Invest. 21: 1–5.PubMedCrossRefGoogle Scholar
  18. Chance, B., Sies, H. and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59: 527–605.PubMedGoogle Scholar
  19. Cortopassi, G.A. and Arnheim, N. (1990) Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acid Res. 18: 6927–6933.PubMedCrossRefGoogle Scholar
  20. Cutler, R.G. (1991) Antioxidants and aging. Am. J. Clin. Nutr. 53: 373S–379S.PubMedGoogle Scholar
  21. Dawson, V.L., Dawson, T.M., Uhl, G.R. and Snyder, S.H. (1993) Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures. Proc. Natl. Acad. Sci. USA 90: 3256–3259.PubMedCrossRefGoogle Scholar
  22. Dexter, D.T., Holley, A.E., Flitter, W.D., Slater, T.F., Wells, F.R., Daniel, S.E., Lees, A.J., Jenner, P. and Marsden, C.D. (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Movement Disorders 9: 92–97.PubMedCrossRefGoogle Scholar
  23. Enstrom, J.E., Kanim, L.E. and Klein, M.A. (1992) Vitamin C intake and mortality among a sample of the United States population. Epidemiology 3: 194–202.PubMedCrossRefGoogle Scholar
  24. Fahn, S. and Cohen, G. (1992) The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann. Neurol. 32: 804–812.PubMedCrossRefGoogle Scholar
  25. Flaherty, J.T. (1991) Myocaldial injury mediated by oxygen free radicals. Am. J. Med. 91: 79S–85S.PubMedCrossRefGoogle Scholar
  26. Fraga, C.G., Motchnik, P.A., Shigenaga, M.K., Helbock, H.J., Jacob, R.A. and Ames, B.N. (1991) Ascorbic acid protects against endogenous oxidative damage in human sperm. Proc. Natl. Acad. Sci. USA 88: 11003–11006.PubMedCrossRefGoogle Scholar
  27. Frei, B., Kim, M.C. and Ames, B.N. (1990) Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc. Natl. Acad. Sci. USA 87: 4879–4883.PubMedCrossRefGoogle Scholar
  28. Gaziano, J.M. and Hennekens, C.H. (1992) Vitamin antioxidants and cardiovascular disease. Curr. Opin. Lipidology 3: 291–294.CrossRefGoogle Scholar
  29. Ginsberg, M.D. (1980) Carbon monoxide. In: P.S. Spencer and H.H. Schaumberg (eds): Experimental and Clinical Neuro-toxicology. Williams and Williams, Baltimore, pp 374–394.Google Scholar
  30. Grist, S.A., McCarron, M., Kutlaca, A., Turner, D.R. and Morley, A.A. (1992) In vivo human somatic mutation: frequency and spectrum with age. Mutation Res. 266: 189–196.PubMedCrossRefGoogle Scholar
  31. Gutteridge, J.M.C. (1992) Ferrous ions detected in cerebrospinal fluid using bleomycin and DNA damage. Clin. Sci. 82: 315–320.PubMedGoogle Scholar
  32. Halliwell, B. and Gutteridge, J.M.C. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1–14.PubMedGoogle Scholar
  33. Halliwell, B. and Gutteridge, J.M.C. (1989) Free Radicals in Biology and Medicine, Clarendon Press, Oxford. Harman, D. (1956) Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11: 298–300.Google Scholar
  34. Harman, D. (1968) Free radical theory of aging: effect of free radical inhibitors on the mortality rate of male LAF1 mice. J. Gerontol. 23: 476–482.PubMedGoogle Scholar
  35. Harman, D. (1971) Free radical theory of aging: effect of the amount and degree of unsaturation of dietary fat on mortality rate. J. Gerontol 26: 451–457.PubMedGoogle Scholar
  36. Harman, D. (1978) Free radical theory of aging: nutritional implications. Age 1: 145–152.CrossRefGoogle Scholar
  37. Harman, D. (1981) The aging process. Proc. Natl. Acad. Sci. USA 78: 7124–7128.PubMedCrossRefGoogle Scholar
  38. Harman, D. (1992) Role of free radicals in aging and disease. Ann. N.Y. Acad. Sci. 673: 126–141.PubMedCrossRefGoogle Scholar
  39. Hattori, K., Tanaka, M., Sugiyama, S., Obayashi, T., Ito T., Satake, T., Hanaki, Y., Asai, J., Nagano, M. and Ozawa, T. (1991) Age-dependent increase in deleted mitochondrial DNA in human heart: possible contributory factor to presbycardia. Am. Heart J. 121: 1735–1742.PubMedCrossRefGoogle Scholar
  40. Howe, G.R., Hirohata, T. and Hislop, T.G. (1990) Dietary factors and risk of breast cancer: combined analysis of 12 case-control studies. J. Natl. Cancer Inst. 82: 561–569.PubMedCrossRefGoogle Scholar
  41. Ikebe, S., Tanaka, M., Ohno, K., Sato, W., Hanori, K., Kando, T., Mizuno, Y. and Ozawa, T. (1990) Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem. Biophys. Res. Commun. 170: 1044–1048.PubMedCrossRefGoogle Scholar
  42. Jellinger, K. (1989) Pathology of Parkinson’s syndrome. In: D.B. Caine (ed.): Handbook of Experimental Pharmacology, Vol. 88, Springer-Verlag, Berlin, pp 47–112.Google Scholar
  43. Jenner, P., Dexter, D.T., Sian, J., Schapira, A.H.V. and Marsden, C.D. (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Levy body disease. Ann. Neurol. 32: S87–S97.CrossRefGoogle Scholar
  44. Jesberger, J.A. and Richardson, J.S. (1991) Oxygen free radicals and brain dysfunction. Int. J. Neurosci 57: 1–17.PubMedCrossRefGoogle Scholar
  45. Kagan, V., Serbinova, E., Koynova, G., Kitanova, S., Tyurin, V., Stoytchev, T., Quinn, P. and Packer, L. (1990) Antioxidant action of ubiquinol homologues with different isoprenoid chain length in biomembranes. Free Rad. Biol. Med. 9: 117–126.PubMedCrossRefGoogle Scholar
  46. Kagan, V.E., Serbinova, E.A., Forte, T., Scita, G. and Packer, L. (1992) Recycling of vitamin E in human low density lipoproteins. J. Lipid Res. 33: 395–397.Google Scholar
  47. Kinouchi, H., Epstein, C.J., Mizui, T., Carlson, E., Chen, S.R. and Chan, P.H. (1991) Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc. Natl. Acad. Sci. USA 88: 11158–11162.PubMedCrossRefGoogle Scholar
  48. Kiozumi, A., Weindruch, R. and Walford, R.L. (1987) Influences of dietary restriction and age on liver enzyme activities and lipid peroxidation in mice. J. Nutr. 117: 361–367.Google Scholar
  49. Korkina, L.G., Durnev, A.D., Suslova, T.B., Chereminisina, Z.P., Daugel-Dauge, N.O. and Afanas’ev, I.B. (1992) Oxygen radical-mediated mutagenic effect of asbestos on human lymphocytes: suppression by oxygen radical scavengers. Mutat. Res. 265: 245–253.PubMedCrossRefGoogle Scholar
  50. Lestienne, P., Nelson, I., Riederer, P., Reichmann, H. and Jellinger, K. (1991) Mitochondrial DNA in postmortem brain from patients with Parkinson’s disease. J. Neurochem. 57: 1819–1822.CrossRefGoogle Scholar
  51. Maitra, I., Serbinova, E., Trischler, H. and Packer, L. (1995) Alpha-lipoic acid prevents buthionine sulfoximineinduced cataract formation in newborn rats. Free Rad. Biol. Med.; (in press).Google Scholar
  52. Marnett, L.J., Hurd, H., Hollstein, M.C., Esterbauer, D.E. and Ames, B.N. (1985) Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA 104. Mutat. Res. 148: 25–34.PubMedCrossRefGoogle Scholar
  53. Nicklas, W.J., Vyas, J. and Heikkila, R.E. (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1 methyl-4-phenyl-1,2,5,6 tetra-hydropyridine. Life Sci. 36: 2503–2508.PubMedCrossRefGoogle Scholar
  54. Oliver, C.N., Ahn, B.-W., Moerman, E.J., Goldstein, S. and Stadtman, E.R. (1987) Agerelated changes in oxidized proteins. J. Biol. Chem. 262: 5488–5491.PubMedGoogle Scholar
  55. Packer, J.E., Slater, T.F. and Willson, R.L. (1979) Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278: 737–738.Google Scholar
  56. Packer, L. and Kagan, V.E. (1992) Vitamin E: the antioxidant harvesting center of membranes and lipoproteins. In: J. Fuchs and L. Packer (eds): Vitamin E in Health and Disease. Marcel Dekker, New York, pp 179–192.Google Scholar
  57. Parker, W.D., Filley, C.M. and Parks, J.K. (1990a) Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology 40: 1302–1303.PubMedGoogle Scholar
  58. Parker, W.D., Boyson, S.J. and Luder, A.S. (1990b) Evidence for a defect in NADH: ubiquinone reductase (complex I) in Huntington’s disease. Neurology 40: 1231–1233.PubMedGoogle Scholar
  59. Parker, W.D., Boyson, S.J. and Parks, J.K. (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann. Neurol. 26: 719–723.PubMedCrossRefGoogle Scholar
  60. Perry, T.L. and Young, V.W. (1986) Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients with Parkinson’ s disease. Neurosci. Lett. 67: 269–274.PubMedCrossRefGoogle Scholar
  61. Perry, T.L., Godin, D.V. and Hansen, S. (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci. Lett. 33: 305–310.PubMedCrossRefGoogle Scholar
  62. Pitot, H.C. (1982) The natural history of neoplastic development: the relation of experimental models to human cancer. Cancer 49: 1206–1211.PubMedCrossRefGoogle Scholar
  63. Regnstrom, J., Nilsson, J., Tornvall, P., Landou, C. and Hamsten, A. (1992) Susceptibility to low-density lipoprotein oxidation and coronary atherosclerosis in man. Lancet 339: 1183–1186.PubMedCrossRefGoogle Scholar
  64. Richter, C., Park, J.-W. and Ames, B.N. (1988) Normal oxidative damage to mitochondria] and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 85: 6465–6467.PubMedCrossRefGoogle Scholar
  65. Riederer, P., Sofic, E., Rausch, W., Schmidt, B., Reynolds, G.P., Jellinger, K. and Youdim, M.B. (1989) Transition metals, ferritin, glutathione and ascorbic acid in parkinsonian brain. J. Neurochem. 52: 515–520.PubMedCrossRefGoogle Scholar
  66. Rosen, D.R., Siddique, T., Patterson, D., Sapp, P., Henatati, A., Donaldson, D., Goto, J., O’Regan, J.P. and Deng, H.X. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59–62.PubMedCrossRefGoogle Scholar
  67. Saggu, H., Cooksey, J., Dexter, D., Wells, F.R., Lees, A., Jenner, P. and Marsden, C. (1989) A selective increase in particulate superoxide dismutase activity in Parkinsonian substantia nigra. J. Neurochem. 53: 692–697.PubMedCrossRefGoogle Scholar
  68. Schaufstatter, I.U., Hyshop, P.A. and Hinshaw, D.B. (1986) Hydrogen peroxide induced injury of cells and its prevention by inhibitors of poly (ADP-ribose) polymerase. Proc. Natl. Acad. Sci. USA 83: 4908–4912.CrossRefGoogle Scholar
  69. Schwartz, P. (1970) Amyloidosis. Charles C. Thomas, Springfield, Illinois.Google Scholar
  70. Shacter, E., Beecham, E.J., Covey, J.M., Kohn, K.W. and Potter, M. (1988) Activated neutrophils induce prolonged DNA damage in neighboring cells. Carcinogenesis 9: 2297–2304.PubMedCrossRefGoogle Scholar
  71. Sofic, E., Riederer, P., Heinsen, H., Beckmann, H., Reynolds, G.P., Hebenstreit, G. and Youdim, M.B.H. (1988) Increased iron (III) and total iron content in post mortem substantia nigra of Parkinson’s brain. J. Neural. Transm. 74: 199–205.PubMedCrossRefGoogle Scholar
  72. Spina, M.B. and Cohen, G. (1989) Dopamine turnover and glutathione oxidation: implication for Parkinson’s disease. Proc. Natl. Acad. Sci. USA 86: 1398–1400.PubMedCrossRefGoogle Scholar
  73. Steinberg, D. (1990) Lipoproteins and atherogenesis: current concepts. JAMA 264: 3047–3052.PubMedCrossRefGoogle Scholar
  74. Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C. and Witztum, J.L. (1989) Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 320: 915–924.PubMedCrossRefGoogle Scholar
  75. Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N. and Ames, B.N. (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235: 1043–1045.PubMedCrossRefGoogle Scholar
  76. Totter, J.R. (1980) Spontaneous cancer and the possible relationship to oxygen metabolism. Proc. Natl. Acad. Sci. USA 77: 1763–1767.PubMedCrossRefGoogle Scholar
  77. Tritschler, H.-J. and Medori, R. (1993) Mitochondria) DNA alterations as a source of human disorders. Neurology 43: 280–288.PubMedGoogle Scholar
  78. Tritschler, H.-J., Packer, L. and Medori, R. (1994) Oxidative stress and mitochondrial dysfunction in neurodegeneration. Bioch. Mol. Biol. Internat., 34: 169–181.Google Scholar
  79. Uitti, R.J., Rajput, A.H., Ashenhurst, E.M. and Rozdilzky, B. (1985) Cyanide induced parkinsonism: a clinic-pathologic report. Neurology 35: 921–925.PubMedGoogle Scholar
  80. Wade, O.L. and Bishop, J.M. (1962) In: Cardiac Output and Regional Blood Flow, Blackwell Scientific Publications, Oxford, pp 112–132.Google Scholar
  81. Weindruch, R. Dietary restriction and the aging process. (1984) In: D. Armstrong (ed.): Free Radicals in Molecular Biology, Aging, and Disease, Raven Press, New York, pp 181–202.Google Scholar
  82. Youngman, L.D., Park, J.-Y.K. and Ames, B.N. (1992) Protein oxidation associated with aging is reduced by dietary restriction of protein or calories. Proc. Natl. Acad. Sci. USA 89: 9112–9116.PubMedCrossRefGoogle Scholar
  83. Yu, B.P., Masoro, E.J., Murata, I., Bertrand, H.A. and Lynd, F.T. (1982) Life span study of SPF Fischer 344 male rats fed ad libitum or restricted diets: longevity, growth, lean body mass and disease. J. Gerontol. 37: 130–141.PubMedGoogle Scholar
  84. Yu, M.-W., You, S.-L., Chang, A.-S., Lu, S.-N., Liaw, Y.-F. and Chen, C.-J. (1991) Association between hepatitis C virus antibodies and hepatocellular carcinoma in Taiwan. Cancer Res. 51: 5621–5625.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1995

Authors and Affiliations

  • L. Packer
    • 1
  1. 1.Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations