Skip to main content

Oligonucleotide Fingerprinting Using Simple Repeat Motifs: A Convenient, Ubiquitously Applicable Method to Detect Hypervariability for Multiple Purposes

  • Chapter
DNA Fingerprinting: Approaches and Applications

Summary

A panel of simple repetitive oligonucleotide probes has been designed and tested for multilocus DNA fingerprinting in some 200 fungal, plant and animal species as well as man. To date at least one of the probes has been found to be informative in each species. The human genome, however, has been the major target of many fingerprinting studies. Using the probe (CAC)5 or (GTG)5, individualization of all humans is possible except for monozygotic twins. Paternity analyses are now performed on a routine basis by the use of multilocus fingerprints, including also cases of deficiency, i.e. where one of the parents is not available for analysis. In forensic science stain analysis is feasible in all tissue remains containing nucleated cells. Depending on the degree of DNA degradation a variety of oligonucleotides are informative, and they have been proven useful in actual case work. Advantages in comparison to other methods including enzymatic DNA amplification techniques (PCR) are evident. Fingerprint patterns of tumors may be changed due to the gain or loss of chromosomes and/or intrachromosomal deletion and amplification events. Locus-specific probes were isolated from the human (CAC)5/(GTG)5 fingerprint with a varying degree of informativeness (monomorphic versus truly hypervariable markers). The feasibility of three different approaches for the isolation of hypervariable mono-locus probes was evaluated. Finally, one particular mixed simple (gt)n(ga)m repeat locus in the second intron of the HLA-DRB genes has been scrutinized to allow comparison of the extent of exon-encoded (protein-) polymorphisms versus intronic hypervariability of simple repeats: adjacent to a single gene sequence (e.g. HLA-DRB1*0401) many different length alleles were found. Group-specific structures of basic repeats were identified within the evolutionarily related DRB alleles. As a further application it is suggested here that due to the ubiquitous interspersion of their targets, short probes for simple repeat sequences are especially useful tools for ordering genomic cosmid, yeast artificial chromosome and phage banks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, S., Müller, C. R., and Epplen, J. T. (1986) DNA fingerprinting by oligonucleotides specific for simple repeats. Hum. Genet. 74: 239–243.

    Article  Google Scholar 

  • Armour, J. A. L. (1990) Systematic cloning of human minisatellites from ordered array charomid libraries. Genomics 8: 501–512.

    Article  Google Scholar 

  • Arnemann, J., Schmidtke, J., Epplen, J. T., Kuhn, H.-J., and Kaumanns, W. (1989) DNA fingerprinting for paternity and maternity in group O Cayo Santiago-derived Rhesus monkeys at the German Primate Center: results of a pilot study. Puerto Rico Health Sci. J. 8: 181–184.

    Google Scholar 

  • Bender, K., Kasulke, D., Mayerova, A., Hummel, K., Weidinger, S., Epplen, J. T., and Wienker, T. (1991) New mutation versus exclusion at the PI locus: a multifaceted approach in a problematical paternity case. Hum. Hered. 814 41: 1–11.

    Article  Google Scholar 

  • Beyermann, B., Nürnberg, P., Weihe, A., Meixner, M., Epplen, J. T., and Börner, T. (1991) Fingerprinting plant genomes with oligonucleotide probes specific for simple repetitive DNA sequences. Theor. Appl. Genet. (in press).

    Google Scholar 

  • Britten, R. J., and Kohne, D. A. (1968) Repeated sequences in DNA. Science 161: 529–540. Buitkamp, J., Ammer, H., and Geldermann, H. (1991) DNA fingerprinting in domestic animal species. Electrophoresis 12: 169–174.

    Google Scholar 

  • Buitkamp, J., Kühn, C., Zischler, H., Epplen, J. T., and Geldermann, H. (1991) DNA

    Google Scholar 

  • fingerprinting in cattle using oligonucleotide probes. Anim. Genet. (in press).

    Google Scholar 

  • Epplen, J. T. (1988) On simple repeated GATA/GACA sequences: a critical reappraisal J. Hered. 79: 409–417.

    Google Scholar 

  • Epplen, J. T., Kammerbauer, C., Steimle, V., Zischler, H., Albert, E., Andreas, A., Hala, K., Nanda, I., Schmid, M., Riess, O., and Weising, K. (1989) Methodology and application of oligonucleotide fingerprinting including characterization of individual hypervariable loci. In: Radola, B. J. (ed.) Electrophoresis Forum ‘89. Bode-Verlag, München, pp. 175–186.

    Google Scholar 

  • Epplen, J. T., McCarrey, J. R., Sutou, S., and Ohno, S. (1982) Base sequence of a cloned snake W-chromosome DNA fragment and identification of a male-specific putative mRNA in the mouse. Proc. Natl. Acad. Sci. USA 79: 3798–3802.

    Article  Google Scholar 

  • Epplen, J. T., Studer, R., and McLaren, A. (1988) Heterogeneity in the Sxr (sex-reversal) locus of the mouse as revealed by synthetic GAT/CA probes. Genet. Res. 51: 239–246. Evett, I. W., Werrett, D. J., and Buckleton, J. S. (1989) Paternity calculations from DNA multilocus profiles. J. Forensic Sci. Soc. 29: 249–254.

    Google Scholar 

  • Felsenstein, J. (1988) Phylogenies from molecular sequences: inference and reliability. Ann. Rev. Genet. 22: 521–565.

    Article  Google Scholar 

  • Fimmers, R., Epplen, J. T., Schneider, P. M., and Baur, M. P. (1990) Likelihood calculations in paternity testing on the basis of DNA-fingerprints. Adv. Forensic Haemogenet. 3: 14–16.

    Article  Google Scholar 

  • Groenen, M. A. M., van der Poel, J. J., R. J. M. Dijkhof, and Giphart, M. J. (1990) The nucleotide sequence of bovine MHC class II DQB and DRB genes. Immunogenet. 31: 37–44.

    Article  Google Scholar 

  • Hastie, N. D., Demster, M., Dunlop, M. G., Thompson, A. M., Green, D. K., Allshire, R. C. (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346: 866–868.

    Article  Google Scholar 

  • Jeffreys, A. F., Wilson, V., and Thein, S. L. (1985a) Hypervariable “minisatellite” regions in human DNA. Nature 316: 67–73.

    Article  Google Scholar 

  • Jeffreys, A. F., Wilson, V., and Thein, S. L. (1985b) Individual-specific “fingerprints” of human DNA. Nature 316: 76–79.

    Article  Google Scholar 

  • Jeffreys, A. F., Royle, N. J., Wilson, V., and Wong, Z. (1988) Spontaneous mutation rates to new length alleles at tandem repetitive hypervariable loci in human DNA. Nature 332: 278–281.

    Article  Google Scholar 

  • Klein, J. (1986) Natural History of the Major Histocompatibility Complex. Wiley, New York.

    Google Scholar 

  • Lagoda, P. J. L., Seitz, G., Epplen, J. T., and Issinger, 0.-G. (1989) Increased detectability of somatic changes in the DNA after probing with “synthetic” and “genome-derived” hypervariable multilocus probes. Hum. Genet. 84: 35–40.

    Article  Google Scholar 

  • McLaren, A., Simpson, E., Epplen, J. T., Studer, R., Koopmann, P., Evans, E. P., and Burgoyne, P. S. (1988) Location of the genes controlling H-Y antigen expression and testis determination on the mouse Y chromosome. Proc. Natl. Acad. Sci. USA 85: 6442–6445.

    Article  Google Scholar 

  • Miyada, C. G., Reyes, A. A., Studencki, A. B., and Wallace, R. B. (1985) Methods of oligonucleotide hybridization. Proc. Natl. Acad. Sci. USA 82: 2890–2894.

    Article  Google Scholar 

  • Monaco, P. J., Rasch, E. M., and Balsano, J. S. (1984) Apomictic reproduction in the Amazon molly, Poecilia formosa, and its triploid hybrids. In: Turner, B. J. (ed.) Evolutionary Genetics of Fishes. Plenum Press, New York, pp. 311–328.

    Google Scholar 

  • Nakamura, Y., Leppert, M., O’Connell, P., Wolff, R., Holm, T., Culver, M., Martin, C., Fujimoto, E., Hoff, M., Kumlin, M., and White, R. (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235: 1616–1622.

    Article  Google Scholar 

  • Mirkin, S. M., Lyamichev, V. I., Drushlyak, K. N., Dobrynin, V. N., Filippov, S. A., and Frank-Kamenetskii, M. D. (1987) DNA H form requires a homopurine-homopyrimidine mirror repeat. Nature 330: 495–497.

    Article  Google Scholar 

  • Nanda, I., Neitzel, H., Sperling, K., Studer, R., and Epplen, J. T. (1988) Simple GAT/CA repeats characterize the X chromosomal heterochromatin of Microtus agrestis, European field vole (Rodentia, Cricetidae). Chromosoma 96: 213–219.

    Article  Google Scholar 

  • Nanda, I., Deubelbeiss, C., Guttenbach, M., Epplen, J. T., and Schmid, M. (1990b) Heterogeneities in the distribution of (GACA)„ simple repeats in the karyotypes of primates and mouse. Hum. Genet. 85: 187–194.

    Article  Google Scholar 

  • Nanda, I., Feichtinger, W., Schmid, M., Schröder, J. H., Zischler, H., and Epplen, J. T. (1990a) Simple repetitive sequences are associated with differentiation of the sex chromosomes in the guppy fish. J. Mol. Evol. 30: 456–462.

    Article  Google Scholar 

  • Nanda, I., Schartl, M., Feichtinger, W., Epplen, J. T., and Schmid, M. (1990) Early stages of sex chromosome differentiation in fish as analyzed by simple repetitive DNA sequences. Chromosoma (in press).

    Google Scholar 

  • Nanda, I., Schmid, M., and Epplen, J. T. (1991) In situ hybridization of nonradioactive oligonucleotide probes to chromosomes. In: Adolph, K. W. (ed.) Advanced Techniques in Chromosome Research. Marcel Decker, New York pp. 117–134.

    Google Scholar 

  • Nürnberg, P., and Epplen, J. T. (1989) “Hidden Partials” — a cautionary note. Fingerprint News 1(4) 11–12.

    Google Scholar 

  • Nürnberg, P. Roewer, L., Neitzel, H., Sperling, K., Pöpperl, A., Hundrieser, J., Pöche, H., Epplen, C., Zischler, H., and Epplen, J. T. (1989) DNA fingerprinting with the oligonucleotide probe (CAC)5/(GTG)5: somatic stability and germline mutatations. Hum. Genet. 84: 75–78.

    Google Scholar 

  • Nürnberg, P., Zischler, H., Fuhrmann, E., Thiel, G., Losanova, T., Kinzel, D., Nisch, G., Witkowski, R., and Epplen, J. T. (1991) Co-amplification of simple repetitive DNA fingerprint fragments and the EGF receptor gene in human gliomas. Genes Chromosomes Cancer 3 (in press).

    Google Scholar 

  • Pöche, H., Peters, C., Wrobel, G., Schneider, V., and Epplen, J. T. (1991) Determining consanguinity by oligonucleotide fingerprinting with (GTG)5/(CAC)5. Electrophoresis (in press).

    Google Scholar 

  • Pöche, H., Wrobel, G., Schneider, V., and Epplen, J. T. (1991) The identification of a charred body by oligonucleotide fingerprinting with the (GTG)5 probe. DNA Technol. Legal Med.

    Google Scholar 

  • Pöche, H., Wrobel, G., Schneider, V., and Epplen, J. T. (1990) DNA fingerprinting with simple repetitive oligonucleotide probes in forensic medicine. Adv. Forensic Haemogenet. 3: 122–124.

    Article  Google Scholar 

  • Pöche, H., Wrobel, G., Schneider, V., and Epplen, J. T. (1990) Oligonucleotid-Fingerprinting mit (GTG)5 und (GACA)4 für die Zuordnung von Leichenteilen. Archiv Kriminologie 186: 37–42.

    Google Scholar 

  • Rich, A., Nordheim, A., and Wang, A. H. Z. (1984) The chemistry and biology of left handed Z DNA. Ann. Rev. Biochem. 53: 791–846.

    Article  Google Scholar 

  • Riess, 0., Kammerbauer, C., Roewer, L., Steimle, V., Andreas, A., Albert, E., Nagai, T., and Epplen, J. T. (1990) Hypervariability of intronic simple (gt)„(ga),,, repeats in HLA-DRBI genes. Immunogenet. 32: 110–116.

    Article  Google Scholar 

  • Roewer, L., Nürnberg, P., Fuhrmann, E., Rose, M., Prokop, O., and Epplen, J. T. (1990) Stain analysis using oligonucleotide probes specific for simple repetitive DNA sequences. Forensic Sci. Internat!. 47: 59–70.

    Article  Google Scholar 

  • Roewer, L., Rose, M., Semm, K., Correns, A., Epplen, J. T. (1989) Typisierung gelagerter, hämolysierter Blutproben durch “DNA-Fingerprinting”. Archiv Kriminologie 184: 103–107.

    Google Scholar 

  • Schäfer, R., Zischler, H., Birsner, U., Becker, A., and Epplen, J. T. (1988) Optimized oligonucleotide probes for DNA fingerprinting. Electrophoresis 9: 369–374.

    Article  Google Scholar 

  • Schart!, M., Nanda, I., Schlupp, I., Parzefall, J., Schmid, M., and Epplen, J. T. (1990) Genetic variation in the clonal vertebrate Poecilia formosa is limited to truly hypervariable loci. Fingerprint News 2 (4): 22–24.

    Google Scholar 

  • Speth, C., Epplen, F. T., and Oberbäumer (1991) DNA fingerprinting with oligonucleotides can differentiate cell lines derived from the same tumor. In Vitro (in press).

    Google Scholar 

  • Sprecher, W., Berg, S., and Epplen, J. T. (1990) Identifikation von Blutproben und foetalem

    Google Scholar 

  • Gewebe durch genetisches Fingerprinting. Archiv Kriminologie 185: 44–51.

    Google Scholar 

  • Sprecher, W., Kampmann, H., Eppten, J. T., and Gross, W. (1991) Idenifizierung einer Brandleiche mit Hilfe des DNA-Fingerprinting. Rechtsmedizin (in press).

    Google Scholar 

  • Tautz, D. (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 17: 6463–6471.

    Article  Google Scholar 

  • Turner, B. J., Elder, J. F., Laughlin, T. F., and Davis, W. P. (1990) Genetic variation in clonal vertebrates detected by simple-sequence DNA fingerprinting. Proc. Natl. Acad. Sci. USA 87: 5653–5657.

    Article  Google Scholar 

  • Vergnaud, G. (1989) Polymers of random short oligonucleotides detect polymorphic loci in the human genome. Nucleic Acids Res. 17: 7623–7630.

    Article  Google Scholar 

  • Vergnaud, G., Mariat, D., Zoroastro, M., and Lauthier, V. (1991) Synthetic tandem repeats of short oligonucleotides can detect single and multiple polymorphic loci. Electrophoresis 12: 134–140.

    Article  Google Scholar 

  • Vogel, W., Steinbach, P., Djalali, M., Mehnert, K., Ali, S., and Epplen, J. T. (1988) Chromosome 9 of Ellobius lutescens is the X chromosome. Chromosoma 96: 112–118.

    Article  Google Scholar 

  • Weising, K., Fiala, B., Ramloch, K., Kahl, G., and Epplen, J. T. (1990) Oligonucleotide fingerprinting in angiosperms. Fingerprint News 2: 5–8.

    Google Scholar 

  • Weising, K., Weigand, F., Driesel, A. J., Kahl, G., Zischler, H., and Epplen, J. T. (1989) Polymorphic simple GATA/GACA repeats in plant genomes. Nucleic Acids Res. 17: 10128 [1 page].

    Google Scholar 

  • Weising, K., Beyermann, B., Ramser, J., and Kahl, G (1991) Plant DNA fingerprinting with radioactive and digoxigenated oligonucleotide probes complementary to simple repetitive DNA sequences. Electrophoresis 12: 159–168.

    Article  Google Scholar 

  • Weising, K., Ramser, J., Kaemmer, Kahl, G., and Epplen, J. T. (1991) Oligonucleotide fingerprinting in plants and fungi. In: Burke, T., Dolf, G., Jeffreys, A. J., and Wolff, R. (eds) DNA fingerprinting: Approaches and Applications. Birkhäuser, Basel. pp. 312–319. (This volume).

    Google Scholar 

  • Yassouridis, A., and Epplen, J. T. (1991) On paternity determination from multilocus DNA profiles. Electrophoresis 12: 221–225.

    Article  Google Scholar 

  • Zischler, H., Hinkkanen, A., and Studer, R. (1991) Oligonucleotide fingerprinting with (CAC)5: Non-radioactive in-gel hybridization and isolation of hypervariable loci. Electrophoresis 12: 141–145.

    Article  Google Scholar 

  • Zischler, H., Nanda, I., Schäfer, R., Schmid, M., and Epplen, J. T. (1989) Digoxigenated oligonucleotide probes specific for simple repeats in DNA fingerprinting and hybridization in situ. Hum. Genet. 82: 227–233.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Epplen, J.T. et al. (1991). Oligonucleotide Fingerprinting Using Simple Repeat Motifs: A Convenient, Ubiquitously Applicable Method to Detect Hypervariability for Multiple Purposes. In: Burke, T., Dolf, G., Jeffreys, A.J., Wolff, R. (eds) DNA Fingerprinting: Approaches and Applications. Experientia Supplementum, vol 58. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7312-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7312-3_4

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7314-7

  • Online ISBN: 978-3-0348-7312-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics