Skip to main content

Population Genetics of Hypervariable Loci: Analysis of PCR Based VNTR Polymorphism Within a Population

  • Chapter

Part of the book series: Experientia Supplementum ((EXS,volume 58))

Summary

Using a polymerase chain reaction (PCR) based method, genotypes at two hypervariable loei (3′ to the Apo-B-structural gene and at the ApoC-II gene) were determined by size classification of alleles. Genotype data at the Apo-B locus (Apo-B VNTR) were obtained on 240 French Caucasians; the sample size for the ApoC-II VNTR was 162. For 160 individuals two-locus genotype data were available. Applications of some recently developed statistical methods to these data indicate that both of these loci are at Hardy-Weinberg equilibrium (HWE) and there is no indication of allelic associations between these two unlinked loci. In addition, the observed numbers of alleles (12 for the Apo-B and 11 for the ApoC-II VNTR loci) are also consistent with their respective expectations based on the observed heterozygosities (76.9% for the Apo-B and 85.9% for the ApoC-II loci) suggesting genetic homogeneity of this population-based sample. The multimodal distribution of allele sizes observed for both loci indicate that the production of new alleles at such VNTR loci may be caused by more than one molecular mechanism. The utility of such highly polymorphic loci for human genetic research and forensic applications are discussed in the context of these findings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baird, M., Balazs, I., Giusti, A., Miyazaki, L., Wexler, K., Kanter, E., Glassberg, J., Rubinstin, P., and Sussman, L. (1986) Allele frequency distribution of two highly polymorphic DNA sequences in three ethnic groups and its application to the determination of paternity. Am. J. Hum. Genet. 39: 489–501.

    Google Scholar 

  • Balazs, I., Baird, M., Clyne, M., and Meade, E. (1989) Human population genetic studies of five hypervariable loci. Am. J. Hum. Genet. 44: 182–190.

    Google Scholar 

  • Bell, G. I., Selby, M. J., and Rutter, W. J. (1982) The highly polymorphic region near the insulin gene is composed of simple tandemly repeating sequences. Nature 295: 31–35.

    Article  Google Scholar 

  • Boerwinkle, E., Xiong, W., Fourest, E., and Chan, L. (1989) Rapid typing of tandemly repeated hypervariable loci by the polymerase chain reaction: Application to the apolipoprotein B 3’ hypervariable region. Proc. Natl. Acad. Sci. USA 86: 212–216.

    Article  Google Scholar 

  • Brown, A. H. D, Feldman, M. W., and Nevo, E. (1980) Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96: 523–536.

    Google Scholar 

  • Capon, D. J., Chen, E. Y., Levinson, A. D., Seeburg, P. H., and Goeddel, D. V. (1983) Complete nucleotide sequence of the T24 human bladder carcinoma oncogene and its normal homologue. Nature 302: 33–37.

    Article  Google Scholar 

  • Chakraborty, R. (1984) Detection of nonrandom association of alleles from the distribution of the number of heterozygous loci in a sample. Genetics 108: 719–731.

    Google Scholar 

  • Chakraborty, R. (1990a) Mitochondrial DNA polymorphism reveals hidden heterogeneity within some Asian populations. Am. J. Hum. Genet. 47: 87–94.

    Google Scholar 

  • Chakraborty, R. (1990b) Genetic profile of cosmopolitan populations: Effects of hidden subdivision. Anthrop. Anz. 48: 313–331.

    Google Scholar 

  • Chakraborty, R. (1991) Generalized occupancy problem and its application in population genetics. In: Sing, C. F., and Hanism, C. L. (eds), Impact of Genetic Variation on Individuals, Families and Populations. Oxford University Press, New York (in press).

    Google Scholar 

  • Chakraborty, R., Fuerst, P. A., and Nei, M. (1978) Statistical studies on protein polymorphism in natural populations. II. Gene differentiation between populations. Genetics 88: 367–390.

    Google Scholar 

  • Chakraborty, R., and Griffiths, R. C. (1982) Correlation of heterozygosity and number of alleles in different frequency classes. Theor. Pop. Biol. 21: 205–218.

    Article  Google Scholar 

  • Chakraborty, R., and Nei, M. (1982) Genetic differentiation of quantitative traits between populations or species. I. Mutation and random genetic drift. Genet. Res. 39: 303–314.

    Article  Google Scholar 

  • Chakraborty, R., Smouse, P. E., and Neel, J. V. (1988) Population amalgamation and genetic variation: Observations on artificially agglomerated tribal populations of Central and South America. Am. J. Hum. Genet. 43: 709–725.

    Google Scholar 

  • Chakraborty, R., and Weiss, K. M. (1991) Genetic variation of the mitochondrial DNA genome in American Indians is at mutation-drift equilibrium. Am. J. Phys. Anthrop. (in press).

    Google Scholar 

  • Cohen, J. E. (1990) DNA fingerprinting for forensic identification: Potential effects on data interpretation of subpopulation heterogeneity and band number variability. Am. J. Hum. Genet. 46: 358–368.

    Google Scholar 

  • Collick, A., and Jeffreys, A.J. (1990) Detection of a novel minisatellite-specific DNA-binding protein. Nucleic Acid Res. 18: 625–629.

    Article  Google Scholar 

  • Clark, A. G. (1987) Neutrality tests of highly polymorphic restriction fragment length polymorphisms. Am. J. Hum. Genet. 41: 948–956.

    Google Scholar 

  • Craig, J., Fowler, S., Burgoyne, L. A., Scott, A. C., and Harding, H. W. J. (1988) Repetitive deoxyribonucleic acid (DNA) and human genome variation: A concise review relevant to forensic biology. J. Forensic Sci. 33: 1111–1126.

    Google Scholar 

  • Devlin, B., Risch, N., and Roeder, K. (1990) No excess homozygosity at loci used for DNA fingerprinting, Science 249: 1416–1420.

    Article  Google Scholar 

  • Edwards, A., Hammond, H. A., Caskey, C. T., and Chakraborty, R. (1991) Population genetics of trimeric and tetrameric tandem repeats in four human ethnic groups. Genomics (in press).

    Google Scholar 

  • Ewens, W. J. (1972) The sampling theory of selectively neutral alleles. Theor. Pop. Biol. 3: 87–112.

    Article  Google Scholar 

  • Efron, B. (1982) The Jackknife, the Bootstrap and Other Resampling plans. CBMS-NSF Regional Conference Series in Applied Mathematics, Monograph 38. SIAM, Philadelphia.

    Google Scholar 

  • Flint, J., Boyce, A.J., Martinson, J.J., and Clegg, J.B. (1989) Population bottlenecks in Polynesia revealed by minisatellites. Hum. Genet. 83: 257–263.

    Article  Google Scholar 

  • Fojo, S., Law, S., and Brewer, H. B. (1987) The human preapolipoprotein C-II gene complete nucleic acid sequence and genomic organization. FEBS Letters 213: 221–226.

    Article  Google Scholar 

  • Goodbourn, S. E. Y., Higgs, D. R., Clegg, J. B., and Weatherall, D. J. (1983) Molecular basis of length polymorphism in the human zeta-globin complex. Proc. Natl. Acad. Sci. USA 80: 5022–5026.

    Article  Google Scholar 

  • Huang, L. S., and Breslow, J. L. (1987) A unique AT-rich hypervariable minisatellite 3’ to the ApoB gene defines a high information restriction length polymorphism. J. Biol. Chem. 262: 8952–8955.

    Google Scholar 

  • Jeffreys, A. J., Royle, V., Wilson, V., and Wong, Z. (1988) Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332: 278–281.

    Article  Google Scholar 

  • Jeffreys, A. J., Wilson, V., and Thein, S. L. (1985) Hypervariable `minisatellite’ regions in human DNA. Nature 314: 67–73.

    Article  Google Scholar 

  • Kidd, K. K., Bowcock, A. M., Schmidtke, J., Track, R. K., Ricciuti, F., Hutchings, G., Bale, A., Perason, P., and Willard, H. F. (1989) Report of the DNA committee and catalogs of cloned and mapped genes and DNA polymorphisms. Cytogenet. Cell Genet. 51: 622–947.

    Article  Google Scholar 

  • Kimura, M., and Crow, J. F. (1964) The number of alleles that can be maintained in a finite population. Genetics 49: 725–738.

    Google Scholar 

  • Kimura, M., and Ohta, T. (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc. Natl. Acad. Sci. USA 75: 2868–2872.

    Article  Google Scholar 

  • Lander, E. S. (1989) DNA fingerprinting on trial. Nature 339: 501–505.

    Article  Google Scholar 

  • Li, W. H. (1976) A mixed model of mutation for electrophoretic identity of proteins within and between populations. Genetics 83: 423–432.

    Google Scholar 

  • Ludwig, E. H., Friedl, W., and McCarthy, B. J. (1989) High-resolution analysis of a hypervariable region in the human apolipoprotein B gene. Am. J. Hum. Genet. 45: 458–464.

    Google Scholar 

  • Nakamura, Y., Leppert, M., O’Connell, P., Wolff, R., Holm, T., Culver, M., Martin, C., Fujimoto, E., Hoff, M., Kumlin, E., and White, R. (1987) Variable number of tandem repeat ( VNTR) markers for human gene mapping. Science 235: 1616–1622.

    Article  Google Scholar 

  • Nei, M., and Li, W. H. (1973) Linkage disequilibrium in subdivided populations. Genetics 75: 213–219.

    Google Scholar 

  • Odelberg, S. J., Platke, R., Eldridge, J. R., Ballard, L., O’Connell, P., Nakamura, Y., Leppert, M., Lalouel, J. M., and White, R. (1989) Characterization of eight VNTR loci by agarose gel electrophoresis. Genomics 5: 915–924.

    Article  Google Scholar 

  • Sokal, R. R., and Rohlf, J. F. (1969) Biometry, 2nd edition. Freeman, New York.

    Google Scholar 

  • Watterson, G.A., and Guess, H.A. (1977) Is the most frequent allele the oldest? Theor. Pop. Biol. 11: 141–160.

    Article  Google Scholar 

  • Wyman, A. R., and White, R. (1980) A highly polymorphic locus in human DNA. Proc. Natl Acad. Sci. USA 77: 6754–6758.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Chakraborty, R., Fornage, M., Gueguen, R., Boerwinkle, E. (1991). Population Genetics of Hypervariable Loci: Analysis of PCR Based VNTR Polymorphism Within a Population. In: Burke, T., Dolf, G., Jeffreys, A.J., Wolff, R. (eds) DNA Fingerprinting: Approaches and Applications. Experientia Supplementum, vol 58. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7312-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7312-3_10

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7314-7

  • Online ISBN: 978-3-0348-7312-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics