Skip to main content

Part of the book series: Progress in Drug Research ((PDR,volume 35))

Abstract

Tremendous progress has been made over the last decade in identifying mechanisms which regulate sympathetic outflow from the central nervous system. This review describes recent developments which have had a major influence on our understanding of the central neurotransmitters involved in the regulation of sympathetic nerve discharge. A critical factor responsible for advances in this field is the development of neuroanatomical techniques which have allowed for the identification of interconnections between areas important in the central regulation of blood pressure. These techniques include the use of fluorescent dyes which exhibit retrograde transport properties and other markers such as the conjugated derivatives of horseradish peroxidase that allow tracing of pathways by both anterograde and retrograde transport. Immunochemical techniques have provided biochemical information indicating a wide variety of putative neurotransmitters are contained within these central pathways. Classical physiologic techniques have been employed to elucidate the role of these pathways in central autonomic regulation and to determine the functional significance of putative neurotransmitters contained within these pathways. Correlative techniques (e.g. single unit spike triggered average of sympathetic nerve activity [see ref. 1 for review]) have been developed to identify neurons contained within central sympathetic pathways. The techniques of microiontophoresis and microinjection of putative transmitters or their antagonists are widely used and have provided valuable information regarding the function of putative neurotransmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. G. Guyenet: Role of the ventral medulla oblongata in blood pressure regulation. In: A. D. Loewy and K. M. Spyer, eds. Autonomic nervous system: central regulation of autonomic function, New York: Oxford University Press, in press.

    Google Scholar 

  2. G. L. Gebber: Brainstem systems involved in cardiovascular regulation. In: W. C. Randall, ed. Nervous control of cardiovascular function, Oxford: Oxford University Press, 1984; 346–368.

    Google Scholar 

  3. R. B. McCall: Effects of putative neurotransmitters on sympathetic preganglionic neurons. In: R. M. Berne, ed. Annual Reviews of Physiology, vol. 50. Palo Alto: Annual Reviews Inc., 1988; 553–564.

    Google Scholar 

  4. A. D. Loewy and J. J. Neil: The role of descending monoaminergic systems in central control of blood pressure. Fed. Proc. 1981; 40: 2778–2785.

    Google Scholar 

  5. P. G. M. Luiten, G. J. Ter Horst and A. B. Steffens: The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation to the control of feeding and metabolism. Prog. in Neurobiol. 1987; 28: 1–54.

    Google Scholar 

  6. C. E. Fulwiler and C. B. Saper: Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Research Rev. 1984; 7: 229–259.

    Google Scholar 

  7. C. B. Saper and D. Levisohn: Afferent connections of the median preoptic nucleus in the rat: anatomical evidence for a cardiovascular integrative mechanism in the anteroventral third ventricular (AV3V) region. Brain Research 1983; 288: 21–32.

    Google Scholar 

  8. J. A. Andrezik, V. Chan-Palay and S. L. Palay: The nucleus paragigantocellularis lateralis in the rat: demonstration of afferents by the retrograde transport of HRP. Anat Embryiol. 1981; 161: 373–390.

    Google Scholar 

  9. C. B. Saper: Reciprocal parabrachial-cortical connections in the rat. Brain Research 1982; 242: 33–40.

    Google Scholar 

  10. J. S. Schwaber: Neuroanatomical substrates of cardiovascular and emotional-autonomic regulation. In: A. Magro, W. Osswald, D. Reis and P. Vanhoutte, eds. Central and peripheral mechanisms of cardiovascular regulation, New York: Plenum Press, 1986; 353–384.

    Google Scholar 

  11. M. J. Brody: Central nervous system mechanisms of arterial pressure regulation. Federation Proc. 1986; 45: 2700–2706.

    Google Scholar 

  12. M. Shioya and J. Tanaka: Inputs from the nucleus of the solitary tract of subfornical organ neurons projecting to the paraventricular nucleus in the rat. Brain Research 1989; 483: 192–195.

    Google Scholar 

  13. D. J. Reis, C. Ross, A. R. Granata and D. A. Ruggiero: Role of Cl area of rostroventrolateral medulla in cardiovascular control. In: J. P. Buckley and C. M. Ferrario, eds. Brain peptides and catecholamines in cardiovascular regulation, New York: Raven Press, 1987; 1–14.

    Google Scholar 

  14. F. R. Calaresu and C. P. Yardley: Medullary basal sympathetic tone. In: R. M. Berne, ed. Annual reviews of physiology, vol. 50. Palo Alto: Annual Reviews Inc., 1988; 511–524.

    Google Scholar 

  15. W. Feldberg and P. G. Guertzenstein: A vasodepressor effect of pentobarbitone sodium. J. Physiol. 1972; 224: 83–103.

    Google Scholar 

  16. P. G. Guertzenstein and A. Silver: Fall in blood pressure from discrete regions of the ventral surface of the medulla by glycine and lesions. J. Physiol. 1974; 242: 489–503.

    Google Scholar 

  17. R. A. L. Dampney and E. A. Moon: Role of ventrolateral medulla in vasomotor response to cerebral ischemia. Am. J. Physiol. 1980; 239: H349–358.

    Google Scholar 

  18. C. A. Ross, D. A. Ruggerio, T. H. E. Joh, D. H. Park and D. H. Reis: Adrenaline synthesizing neurons in the rostral ventrolateral medulla: a possible role in tonic vasomotor control. Brain Research 1983; 273: 356–361.

    Google Scholar 

  19. C. A. Ross, D. A. Ruggerio and D. H. Park, et al.: Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing Cl adrenaline neurons on arterial pressure, heart rate and plasma catecholamines and vasopressin. J. Neurosci 1984; 4: 474–494.

    Google Scholar 

  20. R. A. L. Dampney, A. K. Goodchild, L. G. Robertson and W. Montgomery: Role of ventrolateral medulla in vasomotor regulation: a correlative anatomical and physiological study. Brain Research 1982; 249: 223–235.

    Google Scholar 

  21. P. J. Gatti, W. P. Norman, A. M. T. Da Silva and R. A. Gillis: Cardiorespiratory effects produced by microinjecting L-glutamic acid into medullary nuclei associated with the ventral surface of the feline medulla. Brain Research 1986; 381: 281–288.

    Google Scholar 

  22. R. N. Willette, P. P. Barcas, A. J. Krieger and H. N. Sapru: Vasopressor and depressor areas in the rat medulla: identification by microinjection of L-glutamate. Neuropharmacol. 1983; 22: 1071–1079.

    Google Scholar 

  23. R. N. Willette, S. Punnen-Grandy, A. J. Krieger and H. N. Sapru: Differential regulation of regional vascular resistance by the rostral and caudal ventrolateral medulla in the rat. J. Auton. Nerv. Syst. 1987; 18: 143–151.

    Google Scholar 

  24. E. E. Benarroch, A. R. Granata, D. Ruggiero, D. H. Park and D. J. Reis: Neurons of the Cl area mediate cardiovascular responses initiated form the ventral medullary surface. Am. J. Physiol. 1986; 250: R932 — R945.

    Google Scholar 

  25. A. R. Granata, D. A. Ruggiero, D. H. Park, T. H. E. Joh and D. H. Reis: Brain stem area with C 1 epinephrine neurons mediates baroreflex vasodepressor responses. Am. J. Physiol. 1985; 248: H547 — H567.

    Google Scholar 

  26. K. Amendt, J. Czachurski, K. Dembowsky and H. Seller: Neurons within the “chemosensitive area” on the ventral surface of the brainstem which project to the intermediolateral column. Pflugers Arch. 1978; 375: 289–292.

    Google Scholar 

  27. A. D. Loewy, J. H. Wallach and S. McKellar: Efferent connections of the ventral medulla oblongata in the rat. Brain Research Rev. 1981; 3: 63–80.

    Google Scholar 

  28. W. W. Blessing, A. K. Goodchild, R. A. L. Dampney and J. P. Chalmers: Cell groups in the lower brainstem of the rabbit projecting to the spinal cord, with special reference to catecholamine-containing neurons. Brain Research 1981; 221: 35–55.

    Google Scholar 

  29. C. A. Ross, D. A. Ruggiero, T. H. E. Joh, D. H. Park and D. J. Reis: Rostral ventrolateral medulla: selective projections to the thoracic autonomic cell column from the region containing Cl adrenaline neurons. J. Comp. Neurol. 1984; 228: 168–185.

    Google Scholar 

  30. S. M. Barman and G. L. Gebber: Axonal projection patterns of ventrolateral medullospinal sympathoexcitatory neurons. J. Neurophysiol. 1985; 53: 1551–1566.

    Google Scholar 

  31. D. L. Brown and P. G. Guyenet: Cardiovascular neurons of brainstem with projections to spinal cord. Am. J. Physiol. 1984; 247: R1009 — R1016.

    Google Scholar 

  32. P. G. Guyenet and D. L. Brown: Nucleus paragigantocellularis lateralis and lumbar sympathetic discharge in the rat. Am. J. Physiol. 1986; 250: R1081 — R1094.

    Google Scholar 

  33. R. M. McAllen: Identification and properties of subretrofacial bulbospinal neurones: a descending cardiovascular pathway in the cat. J. Auton. Nerv. Syst. 1986; 17: 151–164.

    Google Scholar 

  34. R. B. McCall: Lack of involvement of GABA in baroreceptor-mediated sympathoinhibition. Am. J. Physiol. 1986; 253: R1065 — R1073.

    Google Scholar 

  35. R. B. McCall: GABA-mediated inhibition of sympathoexcitatory neurons by midline medullary stimulation. Am. J. Physiol. 1988; 255: R605 — R615.

    Google Scholar 

  36. M. K. Sun and P. G. Guyenet: GABA-mediated baroreceptor inhibition of reticulospinal neurons. Am. J. Physiol. 1985; 249: R672 — R680.

    Google Scholar 

  37. D. C. Tucker, C. B. Saper, D. A. Ruggiero and D. J. Reis: Organization of central adrenergic pathways: I. Relationships of ventrolateral medullary projections to the hypothalamus and spinal cord. J. Comp. Neurol. 1987; 259: 591–603.

    Google Scholar 

  38. P. G. Guyenet and J. B. Cabot: Inhibition of sympathetic preganglionic neurons by catecholamines and clonidine: mediation by an adrenergic receptor. J. Neurosci. 1981; 1: 908–917.

    Google Scholar 

  39. P. G. Guyenet and R. L. Stornetta: Inhibition of sympathetic preganglionic discharges by epinephrine and a-methylepinephrine. Brain Research 1982; 235: 271–283.

    Google Scholar 

  40. K. Kadzielawa: Inhibition of the activity of sympathetic preganglionic neurones and neurones activated by visceral afferents, by alpha-methylnoradrenaline and endogenous catecholamines. Neuropharmacol. 1983; 22: 3–17.

    Google Scholar 

  41. A. V. Seybold and R. P. Elde: Receptor autoradiography in thoracic spinal cord: correlation of neurotransmitter binding sites with symphatoadrenal neurons. J. Neurosci. 1984; 4: 2533–2542.

    Google Scholar 

  42. S. Nishi, M. Yoshimura and C. Polosa: Synaptic potentials and putative transmitter actions in sympathetic preganglionic neurons. In: J. Ciriello, F. R. Calaresu, L. P. Renaud, C. Polosa, eds.: Organization of the autonomic nervous system central and peripheral mechanisms, New York: Alan R. Liss, 1987; 15–26.

    Google Scholar 

  43. C. Sangdee and D. N. Franz: Evidence for inhibition of symphathetic preganglionic neurons by bulbospinal epinephrine pathways. Neurosci. Lett. 1983; 37: 167–173.

    Google Scholar 

  44. C. J. Heike, J. J. Neil, V. J. Massari and A. D. Loewy: Substance P neurons project from the ventral medulla to the IML in the rat. Brain Research 1982; 243: 147–152.

    Google Scholar 

  45. J. R. Haselton and P. G. Guyenet: Electrophysiological characeterization of putative Cl adrenergic neurons in the rat. Neuroscience 1989; 30: 199–214.

    Google Scholar 

  46. M. K. Sun, J. T. Hackett and P. G. Guyenet: Symphatoexcitatory neurons of rostral ventrolateral medulla exhibit pacemaker proterties in the presence of a glutamate-receptor antagonist. Brain Research 1988; 438: 23–40.

    Google Scholar 

  47. M. K. Sun, B. S. Young, J. T. Hackett and P. G. Guyenet: Rostral ventrolateral medullary neurons with intrinsic pacemaker properties are not catecholaminergic. Brain Research 1988; 451: 345–349.

    Google Scholar 

  48. M. K. Sun and P. G. Guyenet: Effect of clonidine and GABA on the discharges of medullospinal sympathoexcitatory neurons in the rat. Brain Research 1986; 368: 1–19.

    Google Scholar 

  49. B. L. Jacobs, P. J. Gannon and E. C. Azmitia: Atlas of serotonergic cell bodies in the cat brainstem: an immunocytochemical analysis. Brain Research Bull. 1984; 13: 1–31.

    Google Scholar 

  50. I. M. Willenberg, R. Dermietzel, A. G. Leibstein and M. Effenberger: Mapping of cholinoceptive (nicotinoceptive) neurons in the lower brainstem: with special reference to the ventral surface of the medulla. J. Auton. Nerv. Syst. 1985; 14: 287–298.

    Google Scholar 

  51. J. C. Finley, J. L. Maderdrut and P. Petrusz: The immunocytochemical localization of enkephalin in the central nervous system of the rat. J. Comp. Neurol. 1981; 198: 541–565.

    Google Scholar 

  52. J. C. Finley, J. L. Maderdrut, L. J. Roger and P. Petrusz: The immunocytochemical localization of somatostatin-containing neurons in the rat central nervous system. Neuroscience 1981; 6: 2173–2192.

    Google Scholar 

  53. J. Ciriello, M. M. Caverson and C. Polosa: Function of the ventrolateral medulla in the control of the circulation. Brain Reserarch Rev. 1986; 111: 359–391.

    Google Scholar 

  54. B. M. Chronwall, D. A. Di Maggio and V. J. Massari et al.: The anatomy of neuropeptide-Y-containing neurons in rat brain. J. Neurosci. 1985; 15: 1159–1181.

    Google Scholar 

  55. P. W. Mantyh and S. P. Hunt: Evidence for cholecystokinin-like immunoreactive neurons in the rat medulla oblongata which project to the spinal cord. Brain Research 1984; 291: 49–54.

    Google Scholar 

  56. A. G. Leibstein, R. Dermietzel, I. M. Willenberg and R. Pauschert: Mapping of different neuropeptides in the lower brainstem of the rat: with special reference to the ventral surface. J. Auton. Nerv. Syst. 1985; 14: 299–313.

    Google Scholar 

  57. R. L. Eskay, R. T. Long and M. Palkovits: Localization of immunoreactive thyrotropin releasing hormone in the lower brainstem of the rat. Brain Research 1983; 277: 159–162.

    Google Scholar 

  58. T. Hokfelt, J. M. Lundberg and K. Tatemoto, et al.: Neuropeptide Y (NPY) and FMRFamide neuropeptide-like immunoreactivities in catecholamine neurons of the rat medulla oblongata. Acta. Physiol. Scand. 1983; 117: 315–318.

    Google Scholar 

  59. R. G. Lorenz, C. B. Saper, D. L. Wong, R. D. Ciaranello and A. D. Loewy: Co-localization of substance P and phenylethanolamine N-methyltransferase-like immunoreactivity in neurons of the ventrolateral medulla that project to the spinal cord: potential role in control of vasomotor tone. Neurosci. Lett. 1985; 55: 255–260.

    Google Scholar 

  60. A. F. Sved: PNMT-containing catecholaminergic neurons are not necessarily adrenergic. Brain Research 1989; 481: 113–118.

    Google Scholar 

  61. C. J. Heike, C. G. Charlton and R. G. Wiley: Studies on the cellular localization of spinal cord substance P receptors. Neuroscience 1986; 19: 523–533.

    Google Scholar 

  62. O. Johansson, T. Hokfelt and B. Pernow, et al.: Immunohistochemical support for three putative transmitters in one neuron: co-existence of 5-hydroxytryptamine, substance P and thyrotropin releasing hormone-like immunoreactivity in medullary neurons projecting to the spinal cord. J. Neurosci. 1981; 6: 1857–1881.

    Google Scholar 

  63. B. M. Davis, J. E. Krause, J. F. McKelry and J. B. Cabot: Effects of spinal lesions on substance P levels in the rat sympathetic preganglionic cell column: evidence for local spinal regulation. Neurosci. 1984; 13: 1311–1326.

    Google Scholar 

  64. B. M. Davis, J. E. Krause, N. Bogan and J. B. Cabot: Intraspinal substance P-containing projections to the sympathetic preganglionic neuropil in pigeon, Columbia livia: high-performance liquid chromatography, radioimmunoassay and electron microscopic evidence. Neuroscience 1988; 26: 655–668.

    Google Scholar 

  65. S. B. Backman and J. L. Henry. Effects of substance P and thyrotropin-releasing hormone on sympathetic preganglionic neurones in the thoracic intermediolateral nucleus of the cat. Can. J. Physiol. Pharmacol. 1983; 62: 248–251.

    Google Scholar 

  66. M. P. Gilbey, K. E. McKenna and L. P. Schramm: Effects of substance P on sympathetic preganglionic neurones. Neurosci. Leu. 1983; 41: 157–159.

    Google Scholar 

  67. C. J. Heike, E. T. Phillip and J. T. O’Neil: Regional peripheral and CNS hemodynamic effects of intrathecal administration of a substance P receptor agonist. J. Auton. Nerv. Syst. 1987; 21: 1–7.

    Google Scholar 

  68. A. P. M. Yusof and J. H. Coote: The action of a substance P antagonist on sympathetic nerve activity in the rat. Neurosci. Lett. 75: 329–333.

    Google Scholar 

  69. J. R. Keeler, C. G. Charlton and C. J. Heike: Cardiovascular effects of spinal cord substance P: Studies with a stable receptor agonist. J. Pharmacol. exp. Therap. 1985; 233: 755–760.

    Google Scholar 

  70. K. Yasphal, S. Gauthier and J. L. Henry: Substance P given intrathecally at the spinal T9 level increases arterial pressure and heart rate in the rat. J. Auton. Nerv. Syst. 1987; 18: 93–103.

    Google Scholar 

  71. H. Hassesian and R. Couture: Cardiovascular responses induced by intrathecal substance P in the conscious freely moving rat. J. Cardiovasc. Pharmacol. 1989; 13: 594–602.

    Google Scholar 

  72. A. D. Loewy and W. B. Sawyer: Substance P antagonists inhibit vasomotor responses elicited from ventral medulla in rat. Brain Research 1982; 245: 379–383.

    Google Scholar 

  73. Y. Takano, J. E. Martin, S. E. Leeman and A. D. Loewy: Substance P immunoreactivity released from spinal cord after kainic acid excitation of the ventral medulla oblongata: a correlation with increases in blood pressure. Brain Research 1984; 291: 168–172.

    Google Scholar 

  74. J. R. Keeler and C. J. Helke: Spinal cord substance P mediates bicuculline-induced activation of cardiovascular responses from the ventral medulla. J. Auton. Nerv. Syst. 1985; 13: 19–33.

    Google Scholar 

  75. A. D. Loewy: Substance P neurons of the ventral medulla: their role in the control of vasomotor tone. In: R. Hainsworth, R. J. Linden and P. N. McWilliam, Mary DASG, eds. Cardiogenic Reflexes, Oxford: Oxford University Press, 1987; 269–285.

    Google Scholar 

  76. T. E. Salt, G. J. De Vries, R. E. Rodriguez, P. M. B. Cahusac, R. Morris and R. G. Hill: Evaluation of (D-Pro2,D-Trp7’9)-substance P as an antagonist of substance P responses in the rat central nervous system. Neurosci. Lett. 1982; 30: 291–295.

    Google Scholar 

  77. T. Hokfelt, S. Vincent and L. Hellsten, et al. Immunohistochemical evidence for a “neurotoxic” action of (D-Pro2,D-Trp7,9) substance P, an analogue with substance P antagonistic activity. Acta. Physiol. Scand. 9181; 113: 571–573.

    Google Scholar 

  78. C. Post, J. A. Karlsson, F. G. Butterworth, C. G. A. Persson and G. R. Strichartz: Local anaesthetic effects of substance P (SP) analogues in vitro. In C. C. Jordan, P. Oehme, eds. Substance P: metabolism and biological activity, London, Taylor and Francis, 1985; 227–241.

    Google Scholar 

  79. B. F. Cox, R. L. Schelper, F. M. Faraci and M. J. Brody: Autonomic, sensory, and motor dysfunction following intrathecal administration of three substance P antagonists. Exp. Brain Research 1988; 70: 61–72.

    Google Scholar 

  80. C. J. Heike and E. T. Phillips: Substance P antagonist-induce spinal cord vasoconstriction: effects of thyrotropin-releasing hormone and substance P agonists. Peptides 1988; 9: 1307–1315.

    Google Scholar 

  81. Howe P. R. C., D. M. Kuhn, J. B. Minson, B. H. Stead and J. P. Chalmers: Evidence for a bulbospinal serotonergic pressor pathway in the rat brain. Brain Research 1983; 270: 29–36.

    Google Scholar 

  82. A. D. Loewy and S. McKellar: Serotonergic projections form the ventral medulla to the intermediolateral cell column in the rat. Brain Research 1981; 211: 146–152.

    Google Scholar 

  83. G. A. Head and P. R. C. Howe: Effects of 6-hydroxydopamine and the PNMT inhibitor LY134046 on pressor responses to stimulation of the subretrofacial nucleus in anaesthetized stroke-prone spontaneously hypertensive rats. J. Auton. Nerv. Syst. 1987; 18: 213–224.

    Google Scholar 

  84. J. B. Minson, J. P. Chalmers, A. C. Caon and B. Renaud: Separate areas of rat medulla oblongata with populations of serotonin-and adrenaline-containing neurons alter blood pressure after L-glutamate stimulation. J. Au-ton. Nerv. Syst. 1987; 19: 39–50.

    Google Scholar 

  85. P. G. Guyenet, M. K. Sun and D. L. Brown: Role of GABA and excitatory aminoacids in medullary baroreflex pathway. In: J. Ciriello, F. R. Calaresu, L. P. Renaud, C. Polosa, eds. Organization of the autonomic nervous system: central and peripheral mechanisms. New York: Alan Liss Inc. 1987; 215–225.

    Google Scholar 

  86. R. B. McCall: Serotonergic excitation of sympathetic preganglionic neu- rons: a microiontophoretic study. Brain Research 1983; 289: 121–127.

    Google Scholar 

  87. S. Nishi, M. Yoshimura and C. Polosa: Synaptic potentials and putative transmitter actions in sympathetic preganglionic neurons. In: J. Ciriello, F. R. Calaresu, L. P. Renaud and C. Polosa, eds. Organization of the autonomic nervous system: central and peripheral mechanisms. New York: Alan Liss Inc. 1987; 15–26.

    Google Scholar 

  88. W. W. Blessing and D. J. Reis: Inhibitory cardiovascular function of neurons in the caudal ventrolateral medulla of the rabbit: relationship to the area containing Al noradrenergic cells. Brain Research 1982; 253: 161–171.

    Google Scholar 

  89. T. A. Day, A. Ro and L. P. Renaud: Depressor area within caudal ventrolateral medulla of the rat does not correspond to the Al catecholamine cell group. Brain Research 1983; 279: 299–302.

    Google Scholar 

  90. W. W. Blessing and D. J. Reis: Evidence that GABA- and glycine-like inputs inhibit vasodepressor neurons in the caudal ventrolateral medulla of the rabbit. Neurosci. Lett. 1983; 37: 57–62.

    Google Scholar 

  91. R. N. Willette, A. J. Krieger, P. P. Barcas and H. N. Sapru: Medullaryaminobutyric acid (GABA) receptors and the regulation of blood pressure in the rat. J. Pharmacol. Exp. Therap. 1983; 226: 893–899.

    Google Scholar 

  92. P. G. Guyenet, T. M. Filtz and S. R. Donaldson: Role of excitatory aminoacids in rat vagal and sympathetic baroreflexes. Brain Research 1987; 407: 272–284.

    Google Scholar 

  93. A. R. Granata, M. Kumada and D. J. Reis: Sympathoinhibition by Al-noradrenergic neutrons is mediated by neurons in the Cl area of the rostral medulla. J. Auton. Nerv. Syst. 1985; 14: 387–395.

    Google Scholar 

  94. J. M. Elliott, V. Kapoor, M. Cain, M. J. West and J. P. Chalmers: The mechanism of hypertension and bradycardia following lesions of the caudal ventrolateral medulla in the rabbit: the role of sympathetic nerves, circulating adrenaline, vasopressin and renin. Clin. Exp. Hyperten. 1985; A7: 1059–1082.

    Google Scholar 

  95. C. A. Ross, D. A. Ruggiero and D. J. Reis: Projections form the nucleus tractus solitarii to the rostral ventrolateral medulla. J. Comp. Neurol. 1985; 242: 511–534.

    Google Scholar 

  96. R. N. Willette, S. Punnen, A. J. Krieger and H. N. Sapru: Interdependence of rostral and caudal ventrolateral medullary areas in the control of blood pressure. Brain Research 1984; 321: 169–174.

    Google Scholar 

  97. P. Bousquet, J. Feldman, R. Boch and J. Schwartz: Central cardiovascular effects of alpha-adrenergic drugs: differences between catecholamines and imidazolines. J. Pharmacol. exp. Therap. 1985; 230: 232–236.

    Google Scholar 

  98. J. N. Sinha, S. Gurtu, K. Sharma and K. P. Bhargava: An analysis of the a-adrenoceptor modulation of vasomotor tone at the level of lateral medullary pressor area (LMPA). Naunyn-Schmied Arch. Pharmacol. 1985; 330: 163–168.

    Google Scholar 

  99. G. K. Aghajanian: The modulatory role of serotonin at multiple receptors in brain. In: B. L. Jacobs, A. Gelperin, eds. Serotonin Neurotransmission and Behavior, Cambridge: The MIT Press, 1981; 156–185.

    Google Scholar 

  100. A. C. Bonham and I. Jeske: Cardiorespiratory effects of DL-homocysteic acid in caudal ventrolateral medulla. Am. I. Physiol. 1989; 256: H688 — H696.

    Google Scholar 

  101. S. McKellar and A. D. Loewy: Efferent projections of the Al catecholamine cell group in the rat: an autoradiographic study. Brain Research: 1982; 241: 11–29.

    Google Scholar 

  102. S. Punnen and H. N. Sapru: Blockade of cholinergic receptors in the Cl area abolishes hypertensive response to opiates in the Al area of the ventrolateral medulla. Brain Research 1985; 336: 180–186.

    Google Scholar 

  103. R. N. Willette, S. Punnen, A. J. Krieger and H. N. Sapru: Cardiovascular control by cholinergic mechanisms in the rostral ventrolateral medulla. J. Pharmacol. exp. Therap. 1984; 231: 457–463.

    Google Scholar 

  104. K. Sundaram and H. Sapru: Cholinergic nerve terminals in the ventrolateral medullary pressor area: pharmacoligical evidence. J. Auton. Nerv. Syst. 1988; 22: 221–228.

    Google Scholar 

  105. S. Punnen, R. N. Willette, A. J. Krieger and H. N. Sapru: Medullary pressor area: site of action of intravenous physostigmine. Brain Research 1986; 382: 178–184.

    Google Scholar 

  106. R. Giuliano, D. A. Ruggiero, S. Morrison, P. Ernsberger and D. J. Reis: Cholinergic regulation of arterial pressure by the Cl area of the rostral ventrolateral medulla. J. Neurosci. 1989; 9: 923–942.

    Google Scholar 

  107. K. Sundaram, A. J. Krieger and H. Sapru: M2 muscarinic receptors mediate pressor responses to cholinergic agonists in the ventrolateral medullary pressor area. Brain Research 1988; 449: 141–149.

    Google Scholar 

  108. D. J. Reis, S. Morrison and D. A. Ruggiero: The Cl area of the brainstem in tonic and reflex control of blood pressure. State of the art lecture. Hypertension 1988; 11: 8–13.

    Google Scholar 

  109. W. W. Blessing, C. B. Jaeger, D. A. Ruggiero and D. J. Reis: Hypothalamic projections of medullary catecholamine neurons in the rabbit: a combined catechlamine fluorescence and HRP transport study. Brain Research Bull. 1982; 9: 279–286.

    Google Scholar 

  110. P. E. Sawchenko and L. W. Swanson: The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Research Rev. 1982; 4: 275–325.

    Google Scholar 

  111. E. Mills and S. C. Wang: Liberation of antidiuretic hormone: location of ascending pathways. Amer. J. Physiol. 1964; 207: 1399–1404.

    Google Scholar 

  112. W. Feldberg and S. M. Rocha: Vasopressin release produced in anaesthetized cats by antagonists of GABA and glycine. Brit. J. Pharmacol. 1978; 62: 99–106.

    Google Scholar 

  113. W. W. Blessing and J. O. Willoughby: Inhibiting the rabbit caudal ventrolateral medulla prevents baroreceptor-initiated secretion of vasopressin. J. Physiol. (Lond.)1985; 367: 253–265.

    Google Scholar 

  114. W. W. Blessing and J. O. Willoughby: Excitation of neuronal function in rabbit caudal ventrolateral medulla elevates plasma vasopressin. Neurosci. Lett. 1985; 58: 189–194.

    Google Scholar 

  115. A. Benetos, I. Gavras and H. Gavras: Noripinephrine applied in the paraventricular hypothalamic nucleus stimulates vasopressin release. Brain Research 1986; 381: 322–326.

    Google Scholar 

  116. T. A. Day, A. V. Ferguson and L. P. Renaud: Facilitatory influence of noradrenergic afferents on the excitability of rat paraventricular nucleus neurosecretory cells. J. Physiol. (Lond.) 1984; 355: 237–249.

    Google Scholar 

  117. T. A. Day and L. P. Renaud: Electrophysiological evidence that noradrenergic afferents selectively facilitate the activity of supraoptic vasopraoptic vasopressin neurons. Brain Research 1984; 303: 233–240.

    Google Scholar 

  118. B. J. Davis, M. L. Blair, J. R. Sladek and C. D. Sladek: Effects of lesions of hypothalamic catecholamines on blood pressure, fluid balance, vasopressin and renin in the rat. Brain Research 1987; 405: 1–15.

    Google Scholar 

  119. J. Tanaka, H. Kaba, H. Saito and K. Seto: Inputs from the Al noradrenergic region to hypothalamic paraventricular neurons in the rat. Brain Research 1985; 355: 368–371.

    Google Scholar 

  120. J. C. R. Randle, C. W. Bourque and L. P. Renaud: a-Adrenergic activation of rat hypothalamic supraoptic neurons maintained in vitro. Brain Research 1984; 307: 374–378.

    Google Scholar 

  121. A. F. Sved: Pontine pressor sites which release vasopressin. Brain Research 1986; 369: 143–150.

    Google Scholar 

  122. T. Imizumi, A. R. Granata, E. E. Benarroch, A. F. Sved and D. J. Reis: Contributions of arginine vasopressin and the sympathetic nervous system to fulminating hypertension after destruction of neurons of caudal ventrolateral medulla in the rat. J. Hyperten. 1985; 3: 491–501.

    Google Scholar 

  123. J. Minson, J. Chalmers, V. Kappor, M. Cain and A. Caon: Relative importance of sympathetic nerves and of circulating adrenaline and vasopressin in mediating hypertension after lesions of the caudal ventrolateral medulla in the rat. J. Hyperten. 1986; 4: 273–281.

    Google Scholar 

  124. Y. I. Kim, C. A. Dudley and R. L. Moss: Inhibitory effect of norepinephrine on the single-unit activity of caudally projecting paraventricular neurons. Synapse 1989; 3: 213–224.

    Google Scholar 

  125. H. Yamashita, R. E. J. Dyball, K. Inenaga and H. Kannan: The effects of noradrenaline on supraoptic and paraventricular cells of mice in vitro. In: J. Ciriello, F. R. Calaresu, L. P. Renaud and C. Polosa, eds. Organization of the autonomic nervous system: central and peripheral mechanisms. New York: Alan Liss Inc. 1987; 417–423.

    Google Scholar 

  126. A. J. Silverman, Yu A. Hou and B. J. Oldfield: Ultrastructural identification of noradrenergic nerve terminals and vasopressin-containing neurons of the paraventricular nucleus in the same thin section. J. Histochem. Cyto-chem. 1983; 31: 1151–1156.

    Google Scholar 

  127. A. D. Loewy, S. McKellar and C. B. Saper: Direct projections from the AS catecholamine cell group to the intermediolateral cell column. Brain Research 1979; 174: 309–314.

    Google Scholar 

  128. C. E. Byrum, R. Stornetta and P. G. Guyenet: Electrophysiological properties of spinally-projecting AS noradrenergic neurons. Brain Research 1984; 303: 15–29.

    Google Scholar 

  129. C. E. Byrum and P. G. Guyenet: Afferent and efferent connections of the AS noradrenergic cell group in the rat. J. Comp. Neurol. 1987; 261: 529–542.

    Google Scholar 

  130. J. J. Neil and A. D. Loewy: Decreases in blood pressure in response to L-glutamate microinjections in the AS catecholamine cell group. Brain Research 1982; 241: 271–278.

    Google Scholar 

  131. A. D. Loewy, L. Marson, D. Parkinson, M. A. Perry and W. B. Sawyer: Descending noradrenergic pathways involved in the AS depressor response. Brain Research 1986; 386: 313–324.

    Google Scholar 

  132. K. A. Stanek, J. J. Neil, W. B. Sawyer and A. D. Loewy: Changes in regional blood flow and cardiac output after L-glutamate stimulation of AS cell group. Amer. J. Physiol. 1984; 246: H44 — H51.

    Google Scholar 

  133. R. L. Stornetta, P. G. Guyenet and R. McCarty: Modulation of autonomic outflow by pontine AS noradrenergic neurons. In: K. Nakamura, ed. Brain and blood pressure control. Elsevier Science Publishers, 1986; 23–28.

    Google Scholar 

  134. J. H. Coote, V. H. McLeod, S. Fleetwood-Walker and M. P. Gilbey: The response of individual sympathetic preganglionic neurones to microelectrophoretically applied endogenous monoamines. Brain Research 1981; 215: 1135–1145.

    Google Scholar 

  135. W. C. DeGroat and R. W. Ryall: An excitatory action of 5-hydroxytryptamine on sympathetic preganglionic neurons. Exp. Brain Research 1967; 3: 299–305.

    Google Scholar 

  136. R. B. McCall and L. T. Harris: Characterization of the central sympathoinhibitory action of ketanserin. J. Pharmacol. exp. Therap. 1987; 241: 736–740.

    Google Scholar 

  137. R. B. McCall and S. J. Humphrey: Evidence for a central depressor action of postsynaptic a,-adrenergic receptor antagonists. J. Auton. Nerv. Syst. 1981; 3: 9–23.

    Google Scholar 

  138. R. B. McCall and M. R. Schuette: Evidence for an alpha-1 receptor-mediated central sympathoinhibitory action of ketanserin. J. Pharmacol. exp. Therap. 1984; 228: 704–710.

    Google Scholar 

  139. G. K. Aghajanian and M. A. Rogawski: The physiological role of a-adrenoceptors in the CNS: new concepts from single-cell studies. Trends in Pharmacol. Sciences 1983; 4: 315–317.

    Google Scholar 

  140. H. Shi, D. I. Lewis and J. H. Coote: Effects of activating spinal alpha-adrenoreceptors on sympathetic nerve activity in the rat. J. Auton. Nerv. Syst. 1988; 23: 69–78.

    Google Scholar 

  141. B. D. Hare, R. J. Neumayr and D. N. Franz: Opposite effects of L-dopa and 5-HTP on spinal sympathetic-reflexes. Nature 1972; 239: 336–337.

    Google Scholar 

  142. R. C. Ma and N. J. Dun: Norepinephrine depolarizes lateral horn cells of neonatal rat spinal cord in vitro. Neurosci. Lett. 1985; 60: 163–168.

    Google Scholar 

  143. M. Yoshimura, C. Polosa and S. Nishi: Noradrenaline modifies sympathetic preganglionic neuron spike and afterpotential. Brain Research 1986; 362: 370–374.

    Google Scholar 

  144. M. Yoshimura, C. Polosa and S. Nishi: Noradrenaline induces rhythmic bursting in sympathetic preganglionic neurons. Brain Research 1987; 420: 147–151.

    Google Scholar 

  145. M. Yoshimura, C. Polosa and S. Nishi: Slow IPSP and the noradrenaline-induced inhibition of the cat sympathetic preganglionic neuron in vitro. Brain Research 1987; 419: 383–386.

    Google Scholar 

  146. R. B. McCall and S. J. Humphrey: Evidence for GABA mediation of sympathetic inhibition evoked from midline medullary depressor sites. Brain Research 1985; 339: 356–361.

    Google Scholar 

  147. S. C. Wang and S. W. Ranson: Autonomic responses to electrical stimulation of the lower brain stem. J. Comp. Neurol. 1939; 71: 437–455.

    Google Scholar 

  148. R. B. McCall and L. T. Harris: Sympathetic alterations after midline medullary raphe lesions. Amer. J. Physiol. 1987; 253: R91 — R100.

    Google Scholar 

  149. S. F. Morrison and G. L. Gebber: Classification of raphe neurons with cardiac-related activity. Amer. J. Physiol. 1982; 243: R49 — R59.

    Google Scholar 

  150. S. F. Morrison and G. L. Gebber: Raphe neurons with sympathetic-related activity: baroreceptor responses and spinal connections. Amer. J. Physiol. 1984; 246: R338 — R348.

    Google Scholar 

  151. R. B. McCall and M. E. Clement: Identification of serotonergic and sympathetic neurons in medullary raphe nuclei. Brain Research 1988; 477: 172–182.

    Google Scholar 

  152. R. B. McCall and L. T. Harris: Role of serotonin and serotonin receptor subtypes in the central regulation of blood pressure. In R. H. Rech and G. A. Gudelsky, eds. 5-HT agonists as psychoactive drugs, Ann. Arbor: NPP Books, 1988; 1433–1462.

    Google Scholar 

  153. R. B. McCall: Role of serotonin in the regulation of sympathetic nerve discharge. In: P. Saxena and P. Bevan, eds. Cardiovascular Pharmacology of 5-hydroxytryptamine: prospective therapeutic applications in press.

    Google Scholar 

  154. J. R. Adair, B. L. Hamilton, K. A. Scappaticci, C. J. Helke and R. A. Gillis: Cardiovascular responses to electrical stimulation of the medullary raphe area of the cat. Brain Research 1977; 128: 141–145.

    Google Scholar 

  155. R. B. McCall: Evidence for a serotonergically mediated sympathoexcitatory response to stimulation of medullary raphe nuclei. Brain Research 1984; 311: 131–139.

    Google Scholar 

  156. D. A. Ruggiero, M. P. Meeley, M. Anwarand and D. J. Reis: Newly identified GABAergic neurons in regions of the ventrolateral medulla which regulate blood pressure. Brain Research 1985; 339: 171–177.

    Google Scholar 

  157. M. Kihara and T. Kubo: Immunocytochemical localization of GABA containing neurons in the ventrolateral medulla oblongata of the rat. Histochemistry 1989; 91: 309–314.

    Google Scholar 

  158. A. D. Loewy: Raphe pallidus and raphe obscurus projections to the intermediolateral cell column in the rat. Brain Research 1981; 222: 129–132.

    Google Scholar 

  159. A. V. Seybold and R. P. Elde: Receptor autoradiography in toracic spinal cord: correlation of neurotransmitter binding sites with sympathoadrenal neurons. J. Neurosci. 1984; 4: 2533–2542.

    Google Scholar 

  160. B. W. Newton and R. W. Hamill: Immunohistochemical distribution of serotionin in spinal autonomic nuclei: I. Fiber patterns in the adult rat. J. Comp. Neurol. 1989; 279: 68–81.

    Google Scholar 

  161. B. L. Jacobs, P. J. Gannon and E C Azmitia: Atlas of serotonergic cell bodies in the cat brainstem: an immunocytochemical analysis. Brain Research Bull. 1984; 13: 1–31.

    Google Scholar 

  162. M. P. Gilbey, J. H. Coote, V. H. McLeod and D. F. Peterson: Inhibition of sympathetic activity by stimulating in the raphe nuclei and the role of 5-hydroxytryptamine in this effect. Brain Research 1981; 226: 131–142.

    Google Scholar 

  163. P. R. C. Howe: Blood pressure control by neurotransmitters in the medulla oblongata and spinal cord. J. Auton. Nerv. Syst. 1985; 12: 95–115.

    Google Scholar 

  164. J. H. Coote and V. H. McLeod: The spinal route of sympatho-inhibitory pathways descending from the medulla oblongata. Pfluger Arch. 1975; 359: 335–347.

    Google Scholar 

  165. D. M. Kuhn, W. A. Wolf and W. Lovenberg: Review of the central serotonergic neutral system in blood pressure regulation. Hypertension 1980; 2: 243–255.

    Google Scholar 

  166. W. A. Wolf and D. M. Kuhn: Antihypertensive effects of L-tryptophan are not mediated by brain serotonin. Brain Research 1984; 295: 356–359.

    Google Scholar 

  167. R. B. McCall and S. J. Humphrey: Involvement of serotonin in the central regulation of blood pressure: evidence for a facilitating effect on sympathetic nerve activity. J. Pharmacol. exp. Therap. 1982; 222: 94–102.

    Google Scholar 

  168. R. C. Ma and N. J. Dun: Excitation of lateral horn neurons of the neonatal rat spinal cord by 5-hydroxytryptamine. Develop. Brain Research 1986; 24: 89–98.

    Google Scholar 

  169. P. M. Pilowsky, V. Kapoor, J. B. Minson, M. J. West and J. P. Chalmers: Spinal cord serotonin release and raised blood pressure after brainstem kainic acid injection. Brain Research 1986; 366: 354–357.

    Google Scholar 

  170. E. H. Mills, J. B. Minson and J. P. Chalmers: The effect of intrathecal serotonergic antagonists on the pressor response to stimulation of the brainstem in the rat. Clin. exp. Hypertens. 1989; 11: 265–276.

    Google Scholar 

  171. M. E. Clement and R. B. McCall: Studies on the site and mechanism of the sympathoexcitatory action of 5-HT2 agonists. Brain Research 1989; submitted.

    Google Scholar 

  172. M. E. Clement and R. B. McCall: Studies on the site and mechanism of the sympatholytic action of 8-OH DPAT. Brain Research 1989; submitted.

    Google Scholar 

  173. G. K. Aghajanian and R. Y. Wang: Physiology and pharmacology of central serotonergic neurons. In M. A. Lipton, A. Di Mascio and K. F. Killam, eds. Psychopharmacology: a generation of progress, New York: Raven Press, 1978; 171–183.

    Google Scholar 

  174. R. M. Bowker, K. N. Westlund, M. C. Sullivan, J. F. Wilber and J. D. Coulter: Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: a multiple transmitter complex. Brain Research 1983; 288: 33–48.

    Google Scholar 

  175. C. J. Helke, S. C. Sayson, J. R. Keeler and C. G. Charlton: Thyrotropin releasing hormone-immunoreactive neurons project from the ventral medulla to the intermediolateral cell column: partial coexistence with serotonin. Brain Research 1986; 381: 1–7.

    Google Scholar 

  176. N. M. Appel, M. W. Wessendorf and R. P. Elde: Thyrotropin-releasing hormone in spinal cord: coexistence with serotonin and with substance P in fibers and terminals apposing identified preganglionic sympathetic neurons. Brain Research 1987; 415: 137–143.

    Google Scholar 

  177. S. B. Backman and J. L. Henry: Effect of substance P and thyrotropin-releasing hormone on sympathetic preganglionic neurones in the upper thoracic intermediolateral nucleus of the cat. Can. J. Physiol. Pharmacol. 1984; 62: 248–251.

    Google Scholar 

  178. D. E. Milhorn, T. Hokfelt, K. Seroogy, W. Oertel, A. A. J. Verhofstad and J. Y. Wu: Immunohistochemical evidence for colocalization of 7-aminobutyric acid and serotonin in neurons of the ventral medulla oblongata projecting to the spinal cord. Brain Research 1987; 410: 179–185.

    Google Scholar 

  179. D. E. Milhorn, T. Hokfelt, A. A. Verhofstad and L. Terenius: Individual cells in the raphe nuclei of the medulla oblongata in rat that contain immunoreactivities for both serotonin and enkephalin project to the spinal cord. Exp. Brain Research 1989; 75: 536–542.

    Google Scholar 

  180. C. W. Xie, J. Tang and J. S. Han: Clonidine stimulated the release of dynorphin in the spinal cord of the rat: a possible mechanism for its depressor effects. Neurosci. Lett, 1986; 65: 224–228.

    Google Scholar 

  181. D. N. Franz, B. D. Hare and K. L. McCloskey: Spinal sympathetic neurons: possible sites of opiate-withdrawal suppression by clonidine. Science 1982; 215: 1643–1645.

    Google Scholar 

  182. K. E. McKenna and L. P. Schramm: Mechanisms mediating the silent period. Studies in the isolated spinal cord of the neonatal rat. Brain Research 1985; 329: 233–240.

    Google Scholar 

  183. S. B. Backman and J. L. Henry: Effects of GABA and glycine on sympathetic preganglionic neurons in the upper thoracic intermediolateral nucleus of the cat. Brain Research 1983; 277: 365–369.

    Google Scholar 

  184. F. J. Gordon: Spinal GABA receptors and central cardiovascular control. Brain Research 1985; 328: 165–169.

    Google Scholar 

  185. D. E. Millhorn, T. Hokfelt, K. Seroogy and A. A. Verhofstad: Extent for colocalization of serotonin and GABA in neurons of the ventral medulla oblongata in rat. Brain Research 1988; 461: 169–174.

    Google Scholar 

  186. D. M Kuhn, W. A. Wolf and W. Lovenberg: Pressor effects of electrical stimulation of the dorsal and median raphe nuclei in anesthetized rats. J. Pharmacol. exp. Therap. 1980; 214: 403–409.

    Google Scholar 

  187. W. A. Wolf, D. M. Kuhn and W. Lovenberg: Pressor effects of dorsal raphe stimulation and intrahypothalamic application of serotonin in the spontaneously hypertensive rat. Brain Research 1981; 208: 192–197.

    Google Scholar 

  188. S. E. Robinson: Serotonergic-cholinergic interactions in blood pressure control in the rat. Fed. Proc. 1984; 43: 21–24.

    Google Scholar 

  189. S. E. Robinson, M. J. Austin and D. M. Gibbens: The role of serotonergic neurons in dorsal raphe, median raphe and anterior hypothalamic pressor mechanisms. Neuropharmacol. 1985; 24: 51–58.

    Google Scholar 

  190. M. Iovino and L. Steardo: Effect of substances influencing brain serotonergic transmission on plasma vasopressin levels in the rat. Europ. J. Pharmacol. 1985; 113: 99–103.

    Google Scholar 

  191. E. Gotoh, K. Murakami, T. D. Bahnson and W. F. Ganong: Role of brain serotonergic pathways and hypothalamus in regulation of renin secretion. Amer. J. Physiol. 1987; 253: R179 — R185.

    Google Scholar 

  192. G. Valiquette: Posterior pituitary hormones and neurophysins. In: Motta M. ed. The endocrine functions of the brain, New York: Raven Press, 1980; 385–417.

    Google Scholar 

  193. L. W. Swanson: Immunohistochemical evidence for a neurophysin-containing autonomic pathway arising in the paraventricular nucleus of hypothalamus. Brain Research 1977; 128: 346–353.

    Google Scholar 

  194. L. W. Swanson and S. McKellar: The distribution of oxytocin- and neurophysin-stained fibers in the spinal cord of the rat and monkey. J. Comp. Neurol. 1979; 188: 87–106.

    Google Scholar 

  195. W. E. Armstrong, S. Warach, G. I. Hatton and T. H. McNeil: Subnuclei in the rat hypothalamic paraventricular nucleus: a cytoarchitectural, horseradish peroxidase and immunocytochemical analysis. Neuroscience 1980; 5: 1931–1958.

    Google Scholar 

  196. L. W. Swanson and H. G. J. M. Kuypers: The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J. Comp. Neurol. 1980; 194: 555–570.

    Google Scholar 

  197. M. V. Sofroniew: Vasopressin and oxytocin in the mammalian brain and spinal cord. Trends in Neurosci. 1983; 5: 467–472.

    Google Scholar 

  198. M. J. Brody, T. P. O’Neill and J. P. Porter: Role of paraventricular and arcuate nuclei in cardiovascular regulation. In: A. Magro, W. Osswald, D. Reis and P. Vanhoutte, eds. Central and peripheral mechanisms of cardiovascular regulation, New York: Plenum Press, 1986; 443–464.

    Google Scholar 

  199. H. Kannan and H. Yamashita: Connections of neurons in the region of the nucleus tractus solitarius with the hypothalamic paraventricular nucleus: their possible involvement in neural control of the cardiovascular system. Brain Research 1985; 329: 205–212.

    Google Scholar 

  200. M. M. Caverson, J. Ciriello and F. R. Calaresu: Paraventricular nucleus of the hypothalamus: an electrophysiological investigation of neurons projecting directly to intermediolateral nucleus in the cat. Brain Research 1984; 305: 380–383.

    Google Scholar 

  201. H. Yamashita, K. Inenaga and K. Koizumi: Possible projections from regions of paraventricular and supraoptic nuclei to the spinal cord: electrophysiological studies: Brain Research 1984; 296: 373–378.

    Google Scholar 

  202. F. R. Calaresu and J. Ciriello: Projections to the hypothalamus from buffer nerves and nucleus tractus solitarius in the cat. Amer. J. Physiol. 1980; 239: R130 — R136.

    Google Scholar 

  203. V. Holets and R. Elde: The differential distribution and relationship of serotoninergic and peptidergic fibers to sympathoadrenal neurons in the intermediolateral cell column of the rat: a combined retrograde axonal transport and immunoflorescence study. Neuroscience 1982; 7: 1155–1174.

    Google Scholar 

  204. T. L. Krukoff, J. Ciriello and F. R. Calaresu: Segmental distribution of peptide- an D5-HT-like immunoreactivity in nerve terminals and fibers of the thoracolumbar sympathetic nuclei of the cat. J. Comp. Neurol. 1985; 240: 103–116.

    Google Scholar 

  205. M. P. Gilbey, J. H. Coote, S. Fleetwood-Walker and D. F. Peterson: The influence of the paraventriculo-spinal pathway, and oxytocin and vasopressin on sympathetic preganglionic neurons. Brain Research 1982; 251: 283–290.

    Google Scholar 

  206. J. Ciriello and F. R. Calaresu: Role of paraventricular and supraoptic nuclei in central cardiovascular regulation in the cat. Amer. J. Physiol. 1980; 239: R137 — R142.

    Google Scholar 

  207. S. B. Backman and J. L. Henry: Effects of oxytocin and vasopressin on thoracic sympathetic preganglionic neurons in the cat. Brain Research Bull. 1984; 13: 679–684.

    Google Scholar 

  208. R. C. Ma and N. J. Dun: Vasopressin depolarizes lateral horn cells of the neonatal rat spinal cord in vitro. Brain Research 1985; 348: 36–43.

    Google Scholar 

  209. J. P. Porter and M. J. Brody: The paraventricular nucleus and cardiovascular regulation: role of spinal vasopressinergic mechanisms. J. Hyperten. 1986; 4 (suppl. 3): S181 — S184.

    Google Scholar 

  210. P. Sleight: Arterial baroreceptors and hypertension, Oxford: Oxford Univ. Press., 1980.

    Google Scholar 

  211. W. T. Talman, M. H. Perrone and D. J. Reis: Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibers. Science 1980; 209: 813–815.

    Google Scholar 

  212. W. T. Talman, M. H. Perrone, P. Scher, S. Kwo and D. J. Reis: Antagonism of the baroreceptor reflex by glutamate diethyl ester, an antagonist to L-glutamate. Brain Research 1981; 217: 186–191.

    Google Scholar 

  213. S. J. Humphrey and R. B. McCall: Evidence that L-glutamic acid mediates baroreceptor function in the cat. Clin. exp. Hyperten. 1984; 6: 1311–1329.

    Google Scholar 

  214. W. T. Talman, A. R. Granata and D. J. Reis: Glutamatergic mechanisms in the nucleus tractus solitarius in blood pressure control. Fed. Proc. 1984; 43: 39–44.

    Google Scholar 

  215. J. R. Simon, S. K. Di Micco, J. A. Di Micco and M. H. Aprison: Choline acetyltransferase and glutamate uptake in the nucleus tractus solitarius and dorsal motor nucleus of the vagus: effect of nodose ganglionectomy. Brain Research 1985; 344: 405–408.

    Google Scholar 

  216. A. R. Granata and D. J. Reis: Release of [31–11L-glutamine acid (L-Glu) an d[3H]D-aspartic acid (D-Asp) in the area of nucleus tractus solitarius in vivo produced by stimulation of the vagus nerve. Brain Research 1983; 259: 77–93.

    Google Scholar 

  217. C. Leone and F. J. Gordon: Is L-glutamate a neurotransmitter of baroreceptor information in the nucleus of the tractus solitarius ? J. Pharmacol. exp. Therap. 1989; 250: 953–962.

    Google Scholar 

  218. B. D. Miller and R. B. Felder: Excitatory amino acid receptors intrinsic to synaptic transmission in nucleus tractus solitarii. Brain Research 1988; 456: 333–343.

    Google Scholar 

  219. R. A. Gillis, C. J. Heike, B. L. Hamilton, W. P. Norman and D. W. Jacobowitz: Evidence that substance P is a neurotransmitter of baro- and chemoreceptor afferents in nucleus tractus solitarius. Brain Research 1980; 181: 476–481.

    Google Scholar 

  220. C. J. Heike, T. L. O’Donohue and D. M. Jacobowitz: Substance P as a baro-and chemoreceptor afferent neurotransmitter: immunocytochemical and neurochemical evidence in the rat. Peptides 1980; 1: 1–9.

    Google Scholar 

  221. A. Nagashima, Y. Takano, K. Tateishi, Y. Matsuooka, T. Hamaoka and H. Kaniya: Cardiovascular roles of tachykinin peptides in the nucleus tractus solitarii of rats. Brain Research 1989; 487: 392–396.

    Google Scholar 

  222. D. M. Jacobowitz and C. J. Helke: Localization of substance P immunoreactive nerves in the carotid body. Brain Research Bull. 1980; 5: 195–197.

    Google Scholar 

  223. C. J. Heike, D. M. Jacobowitz and N. B. Thoa: Capsaicin and potassium evoked substance P release from the nucleus tractus solitarius and spinal trigeminal nucleus in vitro. Life Sci. 1981; 29: 1779–1785.

    Google Scholar 

  224. C. J. Heike: Neuroanatomical localization of substance P: implications for central cardiovascular control. Peptides 1982; 3: 479–483.

    Google Scholar 

  225. D. A. Morilak, M. Morris and J. Chalmers: Release of substance Pin the nucleus tractus solitarius measured by in vivo microdialysis in rabbit. Neurosci Lett. 1988; 94: 131–137.

    Google Scholar 

  226. G. Haeusler and R. Osterwalder: Evidence suggesting a transmitter or neuromodulatory role for substance P at the first synapse of the baroreceptor reflex. Naunyn-Schmied Arch. Pharmacol. 1980; 314: 111–121.

    Google Scholar 

  227. W. T. Talman and D. J. Reis: Baroreflex actions of substance P microinjected into the nucleus tractus solitarii in rat: a consequence of local distortion. Brain Research 1981; 220: 402–407.

    Google Scholar 

  228. T. Kubo and M. Kihara: Blood pressure modulation by substance P in the rat nucleus tractus solitarius. Brain Research 1987; 413: 379–383.

    Google Scholar 

  229. M. P. Morin-Surun, D. Jordan, J. Champagnat, K. M. Spyer and M. Denavit-Saudie: Excitatory effects of iontophoretically applied substance P on neurons in the nucleus tractus solitarius of the cat: lack of interaction with opiates and opioids. Brain Research 1984; 307: 3988–392.

    Google Scholar 

  230. P. D. Feldman and H. C. Moises: Adrenergic responses of baroreceptive cells in the nucleus tractus solitarii of the rat: a microiontophoretic study. Brain Research 1987; 420: 351–361.

    Google Scholar 

  231. P. D. Feldman and H. C. Moises: Electrophysiological evidence for alpha 1- and alpha 2-adrenoceptors in solitary tract nucleus. Amer. J. Physiol. 1988; 254: H756 — H762.

    Google Scholar 

  232. D. J. Reis, T. H. Joh, M. A. Nathan, B. Renaud, D. W. Snyder and W. T. Talman: Nucleus tractus solitarii: catecholaminergic innervation in normal and abnormal control of arterial pressure. In: P. Myer, H. Schmitt, eds. Nervous system and hypertension, Toronto: Wiley-Flammarion, 1979; 147–164.

    Google Scholar 

  233. W. A. Wolf, D. M. Kuhn and W. Lovenberg: Blood pressure responses to local application of serotonergic agents in the nucleus tractus solitarii. Europ. J. Pharmacol. 1981; 69: 291–299.

    Google Scholar 

  234. D. A. Carter and S. L. Lightman: Cardio-respiratory actions of substance P, TRH and 5-HT in the nucleus tractus solitarius of rats: evidence for functional interactions of neuropeptides and amine neurotransmitters. Neuropeptides 1985; 6: 425–436.

    Google Scholar 

  235. R. Laguzzi, D. J. Reis and W. T. Talman: Modulation of cardiovascular and electrocortical activity through serotonergic mechanisms in the nucleus tractus solitarius of the rat. Brain Research 1984; 304: 321–328.

    Google Scholar 

  236. A. Shvaloff and R. Laguzzi: Serotonin receptors in the rat nucleus tractus solitarii and cardiovascular regulation. Europ. J. Pharmacol. 1986; 132: 283–288.

    Google Scholar 

  237. J. M. Catelli, W. J. Giakas and A. F. Sved: GABAergic mechanisms in nucleus tractus solitarius alter blood pressure and vasopressin release. Brain Research 1987; 403: 279–289.

    Google Scholar 

  238. T. Kubo and M. Kihara: Evidence for gamma-aminobutyric acid receptor-mediated modulation of the aortic baroreceptor reflex in the nucleus tractus solitarii of the rat. Neurosci Lett. 1988; 89: 156–160.

    Google Scholar 

  239. J. C. Sved and A. F. Sved: Cardiovascular responses elicited by gammaamionbutyric acid in the nucleus tractus solitarius: evidence for action at the GABAB receptor. Neuropharmacology 1989; 28: 515–520.

    Google Scholar 

  240. P. N. McWilliam and S. L. Shepheard: A GABA-mediated inhibition of neurones in the nucleus tractus solitarius of the cat that respond to electrical stimulation of the carotid sinus nerve. Neurosci. Lett. 1988; 94: 321–326.

    Google Scholar 

  241. T. Kubo and M. Kihara: Evidence for the presence of GABAergic and glycine-like systems responsible for cardiovascular control in the nucleus tractus solitarii of the rat. Neurosci. Lett. 1987; 74: 331–336.

    Google Scholar 

  242. D. Jordan, S. W. Mifflin and K. M. Spyer: Hypothalamic inhibition of neuronses in teh nucleus tractus solitarius of the cat is GABA mediated. J. Physiol. (Lond.) 1988; 399: 389–404.

    Google Scholar 

  243. H. Matsuguchi, F. M. Sharabi, F. J. Gordon, A. K. Johnson and P. G. Schmid: Blood pressure and heart rate responses to microinjection of vasopressin into the nucleus tractus solitarius region of the rat. Neuropharmacol. 1982; 21: 687–693.

    Google Scholar 

  244. K. A. King and C. C. Pang: Cardiovascular effects of injections of vasopressin into the nucleus tractus solitarius in conscious rats. Brit. J. Pharmacol. 1987; 90: 531–536.

    Google Scholar 

  245. Q. J. Pittmann and L. G. Franklin: Vasopressin antagonist in nucleus tractus solitarius/vagal area reduces pressor and tachycardia responses to paraventricular nucleus stimulation in rats. Neurosci. Lett. 1985; 56: 155–160.

    Google Scholar 

  246. D. B. Averill, D. I. Diz, K. L. Barnes and C. M. Ferrario: Pressor responses of angiotensin II microinjected into the dorsomedial medulla of the dog. Brain Research 1987; 414: 294–300.

    Google Scholar 

  247. R. Casto and M. I. Phillips: Neuropeptide action in nucleus tractus solitarius: angiotensin specificity and hypertensive rats. Amer. J. Physiol. 1985; 249: R341 — R347.

    Google Scholar 

  248. R. Rettig, D. P. Healy and M. P. Printz: Cardiovascular effects of microinjections of angiotensin II into the nucleus tractus solitarii. Brain Research 1986; 364: 233–240.

    Google Scholar 

  249. M. J. Campagnole-Santos, D. I. Diz, R. A. S. Santos, M. C. Khosla, K. B. Brosnihan and C. M. Ferrario: Cardiovascular effects of angiotensin (1–7) injected into the dorsal medulla of rats. Am. J. Physiol. 1989; 257: H 324—H329.

    Google Scholar 

  250. M. J. Campagnole-Santos, D. I. Diz and C. M. Ferrario: Baroreceptor reflex modulation by angiotensin II at the nucleus tractus solitarii. Hypertension 1988; 11: 167–171.

    Google Scholar 

  251. M. A. Petty and W. De Jong: Enkephalins induce a centrally mediated rise in blood pressure in rats. Brain Research 1983; 260: 322–325.

    Google Scholar 

  252. M. A. Petty and W. De Jong: Cardiovascular effects of fi-endorphin after microinjection into the nucleus tractus solitarii of the anesthetized rat. Europ. J. Pharmacol. 1982; 81: 449–457.

    Google Scholar 

  253. L. Y. Koda, N. Ling, R. Benoit, S. G. Madamba and C. Bakhit: Blood pressure following microinjection of somatostatin related peptides into the rat nucleus tractus solitarii. Europ. J. Pharmacol. 1985; 113: 425–430.

    Google Scholar 

  254. M. Vallejo, S. Lightman and I. Marshall: Central cardiovascular effects of calcitonin generelated peptide: interaction with noradrenaline in the nucleus tractus solitarious of rats. Exp. Brain Research 1988; 70: 221–224.

    Google Scholar 

  255. C. J. Tseng, R. Mosqueda-Garcia, M. Appalsamy and D. Robertson: Cardiovascular effects of neuropeptide Y in rat brainstem nuclei. Circulation Research 1989; 64: 55–61.

    Google Scholar 

  256. R. W. Urbanski and H. N. Sapru: Putative neurontransmitters involved in medullary cardiovascular regulation. J. Auton. Nerv. Syst. 1988; 25: 181–193.

    Google Scholar 

  257. M. Kihara and T. Kubo: Cardiovascular effects of GABA system activating drugs injected into the caudal ventrolateral medulla of the rat. Arch. Int. Pharmacodyn Ther. 1988; 295: 67–79.

    Google Scholar 

  258. R. N. Willette, P. P. Barcas, A. J. Krieger and H. N. Sapru: Endogenous GABAergic mechanisms in the medulla and the regulation of blood pressure. J. Pharmacol. exp. Therap. 1984; 230: 34–39.

    Google Scholar 

  259. K. A. Yamada, R. M. McAllen and A. D. Loewy: GABA antagonists applied to the ventral surface of the medulla oblongata block the baroreceptor reflex. Brain Research 1984; 297: 175–180.

    Google Scholar 

  260. S. J. Humphrey and R. B. McCall: Evidence for y-aminobutyric acid mediation of the sympathetic nerve inhibitory response to vagal afferent stimulation. J. Pharmacol. exp. Therap. 1985; 234: 288–297.

    Google Scholar 

  261. M.-K. Sun and P. G. Guyenet: Arterial baroreceptor and vagal inputs to sympathoexcitatory neurons in rat medulla. Amer. J. Physiol. 1987; 252: R699 — R709.

    Google Scholar 

  262. J. H. Jhamandas and L. P. Renaud: Bicuculline blocks an inhibitory baroreflex input to supraoptic vasopressin neurons. Amer. J. Physiol. 1987; 252: R947 — R952.

    Google Scholar 

  263. M. Kasai, T. Osaka, K. Inenaga, H. Kannan and H. Yamashita: Gammaaminobutyric acid antagonist blocks baroreceptor-activated inhibition of neurosecretory cells in the hypothalamic paraventricular nucleus of rats. Neurosci. Lett. 1987; 81: 319–324.

    Google Scholar 

  264. K. L. Barnes and C. M. Ferrario: Differential effects of angiotensin II mediated by the area postrema and the anteroventral third ventricle. In: J. P. Buckley and C. M. Ferrario, eds. Brain peptides and catecholamines in cardiovascular regulation, New York: Raven Press, 1987; 289–300.

    Google Scholar 

  265. J. E. Faber and M. J. Brody: Central nervous system action of angiotensin during onset of renal hypertension in awake rats. Amer. J. Physiol. 1984; 247: H349 — H360.

    Google Scholar 

  266. A. K. Johnson: The periventricular anteroventral third ventricle (AV3V): its relationship with the subfornical organ and neuronal systems involved in maintaining body fluid homeostasis. Brain Research Bull. 1985; 15: 595–601.

    Google Scholar 

  267. V. S. Bishop, E. M. Hasser and K. P. Undesser: Vasopressin and sympathetic nerve activity: involvement of the area postrema. In: J. P. Buckley and C. M. Ferrario, eds. Brain peptides and catecholamines in cardiovascular regulation, New York: Raven Press, 1987; 373–382.

    Google Scholar 

  268. E. M. Hasser, S. E. Di Carlo, R. J. Applegate and V. S. Bishop: Osmotically released vasopressin augments cardiopulmonary reflex inhibition of the circulation. Amer. J. Physiol. 1988; 254: R815 — R820.

    Google Scholar 

  269. P. I. Korner and J. A. Angus: Central nervous control of blood pressure in relation to antihypertensive drug treatment. In: D. E. Austin, ed. Anti-hypertensive Drugs, New York: Permagon Press, 1982; 61–96.

    Google Scholar 

  270. G. Haeusler: Clonidine-induced inhibition of sympathetic nerve activity: no indication of a central presynaptic or an indirect sympathomimetic mode of action. Naunyn-Schmied Arch. Pharmacol. 1974; 286: 97–111.

    Google Scholar 

  271. P. Bousquet, J. Feldman and J. Schwartz: The medullary cardiovascular effects of imidazolines and some GABA analogues: a review J. Auton. Nerv. Syst. 1985; 14: 263–270.

    Google Scholar 

  272. A. R. Granata, Y. Numao, M. Kumada and D. J. Reis: Al noradrenergic neurons tonically inhibit sympathoexcitatory neurons of Cl area in rat brain stem. Brain Research 1986; 377: 127–146.

    Google Scholar 

  273. P. J. Gatti, K. J. Hill, A. M. T. Da Silva, W. P. Norman and R. A. Gillis: Central nervous system site of action for the hypotensive effect of clonidine in the cat. J. Pharmacol. exp. Therap. 1988; 245: 373–380.

    Google Scholar 

  274. D. N. Franz, P. W. Madsen, R. G. Peterson and C. Sangdee: Functional roles of monoaminergic pathways to sympathetic preganglionic neurons. Clin. exp. Hyperten. 1982; A4: 543–562.

    Google Scholar 

  275. R. B. McCall, M. R. Schuette, S. J. Humphrey, R. A. Lahti and C. Barsuhn: Evidence for a central sympathoexcitatory action of alpha-2 adrenergic antagonists. J. Pharmacol. exp. Therap. 1983; 224: 501–507.

    Google Scholar 

  276. R. B. McCall, B. N. Patel and L. T. Harris: Effects of serotonin1 and serotonin2 receptor agonists and antagonists on blood pressure, heart rate and sympathetic nerve activity. J. Pharmacol. exp. Therap. 1987; 242: 1152–1159.

    Google Scholar 

  277. J. R. Fozard, A. K. Mir and D. N. Middlemiss: Cardiovascular response to 8-hydroxy-2-(di-N-propylamino) tetralin (8-OH DPAT) in the rat: site of action and pharmacological analysis. J. Card. Pharmacol. 1987; 9: 328–347.

    Google Scholar 

  278. A. G. Ramage and J. R. Fozard: Evidence that the putative 5-HT1A receptor agonists 8-OH DPAT and ipsapirone have a central hypotensive action that differs from that of clonidine in anesthetized cats. Europ. J. Pharma-col. 1987; 138: 179–191.

    Google Scholar 

  279. D. Verge, G. Daval, A. Patey, H. Gozlan, S. El Mestikawy and M. Hamon: Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HTIA subtype. Europ. J. Pharmacol. 1985; 113: 463–464.

    Google Scholar 

  280. M. R. Dashwood, M. P. Gilbey, D. Jordan and A. G. Ramage: Autoradiographic localization of 5-HT1A binding sites in the brainstem of the cat. Brit. J. Pharmacol. 1988; 94: 386 P.

    Google Scholar 

  281. R. B. McCall, M. E. Clement and L. T. Harris: Studies on the mechanism of the sympatholytic effect of 8-OH DPAT: lack of correlation between inhibition of serotonin neuronal firing and sympathetic activity. Brain Research 1989; in press.

    Google Scholar 

  282. R. A. Gillis, K. Hill and J. S. Kirby, et al.: Effect of activation of CNS serotonin 1 A receptors on cardiorespiratory function. J. Pharmacol exp. Therap. 1989; 248: 851–857.

    Google Scholar 

  283. M. Laubie, M. Drouillat, H. Dabire, C. Cherqui and H. Schmitt: Ventrolateral medullary pressor area: site of hypotensive and sympatho-inhibitory effects of (+/-)8-OH-DPAT in anaesthetized dogs. Europ. J. Pharmacol. 1989; 160: 385–394.

    Google Scholar 

  284. J. S. Sprouse and G. K. Aghajanian: Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1987; 1: 3–9.

    Google Scholar 

  285. C. A. Fornal and B. L. Jacobs: Physiological and behavioral correlates of serotonergic single-unit activity. In: N. N. Osborne and M. Hamon, eds. Neuronal serotonin WK Chichester: John Wiley and Sons Ltd., 1988; in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Basel AG

About this chapter

Cite this chapter

McCall, R.B. (1990). Role of neurotransmitters in the central regulation of the cardiovascular system. In: Jucker, E. (eds) Progress in Drug Research / Fortschritte der Arzneimittelforschung / Progrès des recherches pharmaceutiques. Progress in Drug Research, vol 35. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7133-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7133-4_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7135-8

  • Online ISBN: 978-3-0348-7133-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics