Skip to main content

Sums of Squares: An Elementary Method

  • Chapter
Number Theory

Part of the book series: Trends in Mathematics ((TM))

  • 1095 Accesses

Abstract

If x 1, x 2, ... , x s are integers positive negative or zero such that

$$ x_1^2 + x_2^2 + \cdot \cdot \cdot x_s^2 = n, $$

then (x 1, x 2, ... , x s ) is called a representation of n as a sum of s squares, and the total number of representations is denoted by R s (n). Two representations (x 1, x 2, ... , x s ) and (y 1, y 2, ... , y s ) are considered to be different unless

$$ {x_1} = {y_1},{x_2} = {y_2},...,{x_s} = {y_s}. $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bachman, Niedere Zahlentheorie,Leipzig, 1910, vol. 2.

    Google Scholar 

  2. H. Bessel, Elementar-arithmetische Untersuchungen über die Darstellung einer natürlichen Zahl als Summe von Quadratzahlen, Inaugural-Dissertation, Königsberg, 1929.

    Google Scholar 

  3. L.E. Dickson, History of the theory of numbers, New York, 1934.

    Google Scholar 

  4. J.W.L. Glaisher, On the number of representations of a number as a sum of 2r squares, Proc. London Math. Soc. (2) 5 (1907), 479–490.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Grosswald, Representations of integers as sums of squares, Springer, Heidelberg, 1985.

    Book  MATH  Google Scholar 

  6. G.H. Hardy, Ramanujan, Cambridge, 1940.

    Google Scholar 

  7. L.K. Hua, Introduction to number theory, Springer, Heidelberg, 1982.

    MATH  Google Scholar 

  8. R.A. Rankin, Hecke operators on congruence subgroups of the modular group, Math. Ann. 168 (1964), 40–58.

    Article  MathSciNet  Google Scholar 

  9. R.A. Rankin, Elementary proofs of relations between Eisenstein series, Proc. Roy. Soc. Edinburgh,76A (1976) 107–117.

    Google Scholar 

  10. R.A. Rankin, Modular forms and functions, Cambridge, 1977.

    Google Scholar 

  11. J.V. Uspensky and Heaslet, M.A., Elementary number theory, New York, 1939, Chapter XIII.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Hindustan Book Agency (India) and Indian National Science Academy

About this chapter

Cite this chapter

Rankin, R.A. (2000). Sums of Squares: An Elementary Method. In: Bambah, R.P., Dumir, V.C., Hans-Gill, R.J. (eds) Number Theory. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7023-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7023-8_20

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7025-2

  • Online ISBN: 978-3-0348-7023-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics