Skip to main content

Abstract

When a convection-free chemical system is kept far from equilibrium by a permanent supply of fresh reactants, stationary spatial concentration patterns may spontaneously form as a result of the coupling of the sole reaction and diffusion processes. In view of its possible implication in morphogenesis, this phenomenon, first predicted by Turing in 1952 [1], has instigated numerous theoretical studies. Various well documented reviews can be found, both from the nonlinear physics [2–4] and biological [5–8] standpoints. However, their experimental observation has long been delayed in regard of practical impediments. Recently, we have reported the first experimental evidence of a Turing-type pattern [9,10]. The key to the success was the use of open spatial reactors with nonhomogeneous distribution of the feeding species, which induces a basic anisotropy in the reactive medium. Thus, all properties of Turing patterns have to be revisited in consideration of this anisotropy. Here we report numerical simulations performed with a geometry and boundary conditions similar to those of the experiments. Our results are in excellent agreement with the observations. They also raise a new class of problems, namely the formation of pattern defects present both in the computations and in the real experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.M. Turing, Philos. Trans. R. Soc. London, B 327, 37 (1952)

    Article  Google Scholar 

  2. G. Nicolis and I. Prigogine, “Self-organization in Nonequilibrium Chemical Systems” ( Wiley, New York, 1977 )

    Google Scholar 

  3. H. Haken, “Synergetics, an Introduction”, (Springer-Verlag, 1977 )

    Google Scholar 

  4. R.J. Field and M. Burger Edts, “Oscillations and Traveling Waves in Chemical systems” ( Wiley, N.Y., 1985 )

    Google Scholar 

  5. H. Meinhardt, “Models of Biological Patterns Formation”, ( Academic Press, N.Y., 1982 )

    Google Scholar 

  6. A. Babloyantz, “Molecules, Dynamics and Life” ( Wiley, N.Y., 1986 )

    Google Scholar 

  7. L.G. Harrison, J. theor. Biol., 185, 369 (1987)

    Article  Google Scholar 

  8. J.D. Murray, “Mathematical Biology” (Springer-Verlag, 1989 )

    Google Scholar 

  9. V. Castets, E. Dulos, J. Boissonade and P. De Kepper, Phys. Rev. Lett., 64, 2953 (1990).

    Article  Google Scholar 

  10. P. De Kepper, V. Castets, E. Dulos, and J. Boissonade, Physica D,to appear.

    Google Scholar 

  11. J.E. Pearson and W. Horsthemke, J. Chem. Phys.,90, 1588 (1989)

    Article  Google Scholar 

  12. A. Arneodo, J. Elezgaray, J.E. Pearson and T. Russo, Physica D,in press

    Google Scholar 

  13. S. Chandrasekhar, “Hydrodynamic and Hydromagnetic Stability”, (Oxford Univ. Press, 1961 );

    Google Scholar 

  14. H.L. Swinney and J.P. Gollub Edts, “Hydrodynamic Instabilities and the Transition to Turbulence”, (Springer, 1981 )

    Google Scholar 

  15. H. Fuji, M. Mimura, and Y. Nishiura, Physica D, 5, 1 (1982)

    Article  MathSciNet  Google Scholar 

  16. A. Gierer and H. Meinhardt, Kybernetik, 12, 30 (1972)

    Article  Google Scholar 

  17. I. Prigogine and R. Lefever, J. Chem. Phys., 48, 1695 (1968)

    Article  Google Scholar 

  18. J. Schnackenberg, J. theor. Biol., 81, 389 (1979)

    Article  Google Scholar 

  19. J.D. Murray, J. theor. Biol., 98, 143 (1982)

    Article  Google Scholar 

  20. L.M. Pismen, J. Chem. Phys., 72, 1900 (1980)

    Article  Google Scholar 

  21. D. Walgraef, G. Dewel, and P. Borckmans, Phys. Rev.A, 21, 397 (1980);

    Article  Google Scholar 

  22. D. Walgraef, G. Dewel, and P. Borckmans, Adv. Chem. Phys., 49, 311 (1982);

    Google Scholar 

  23. D. Walgraef, “Structures spatiales loin de l’équilibre” ( Masson, Paris, 1988 )

    Google Scholar 

  24. J. Boissonade, J. Physique (France), 49, 541 (1988);

    Article  Google Scholar 

  25. J. Boissonade, M. Boukalouch and P. De Kepper, in “Spatial inhomogeneities and transient behaviour in chemical kinetics”, Ed. P. Gray, G. Nicolis, F. Baras, P. Borckmans and S.K. Scott, p. 433 ( Manchester University Press, 1990 )

    Google Scholar 

  26. M. Herschkowitz-Kaufman and G. Nicolis, J. Chem. Phys., 56, 1890 (1972);

    Article  Google Scholar 

  27. M. Herschkowitz-Kaufman, Bull. Math. Biol. 37, 585 (1975)

    Article  MathSciNet  Google Scholar 

  28. L.L. Bonilla and M.C. Velarde, J. Math. Phys., 21, 2586 (1980)

    Article  MATH  Google Scholar 

  29. G. Dewel, D. Walgraef, and P. Borkmans, J. Chico. Physique (Paris), 84, 1335 (1987)

    Google Scholar 

  30. Z. Noszticzius, W. Horsthemke, W.D. McCormick, H.L. Swinney, and W.Y. Tam, Nature, 329, 619 (1987);

    Article  Google Scholar 

  31. Z. Noszticzius, W. Horsthemke, W.D. McCormick, and H.L. Swinney in “Spatial inhomogeneities and transient behaviour in chemical kinetics”, Ed. P. Gray, G. Nicolis, F. Baras, P. Borckmans and S.K. Scott, p. 429 (Manchester University Press, 1990 );

    Google Scholar 

  32. N. Kreisberg, W.D. McCormick, and H.L. Swinney, J. Chem. Phys. 91, 6532 (1989)

    Article  Google Scholar 

  33. E. Dulos, J. Boissonade and P. De Kepper, in “Nonlinear Wave Processes in Excitable Media”,Edt A.V. Holden, M. Markus, H.G. Othmer, Pergarnon press, in press.

    Google Scholar 

  34. P. De Kepper, I.R. Epstein, K. Kustin and M. Orbân, J. Phys. Chem. 86, 170 (1982);

    Article  Google Scholar 

  35. C.E. Dateo, M. Orbbn, P. De Kepper and I. R. Epstein, J. Am. Chem. Soc., 104, 504 (1982);

    Article  Google Scholar 

  36. M. Orbân, P. De Kepper, I.R. Epstein, and K. Kustin, Nature, 292, 816 (1981)

    Article  Google Scholar 

  37. P. De Kepper, J. Boissonade, and I. Epstein, J. Phys. Chem., 94, 6525 (1990)

    Article  Google Scholar 

  38. P. Manneville, “Dissipative Structures and Weak Turbulence”, (Academic Press, 1990 )

    Google Scholar 

  39. Y. Kuramoto, “Chemical Oscillations, waves, and turbulence”, (Springer, 1984 )

    Google Scholar 

  40. V.S. Zykov “Simulation of wave processes in excitable media”, (Manchester University Press, 1987 )

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Boissonade, J., Castets, V., Dulos, E., De Kepper, P. (1991). Turing Structures in Anisotropic Media. In: Seydel, R., Schneider, F.W., Küpper, T., Troger, H. (eds) Bifurcation and Chaos: Analysis, Algorithms, Applications. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, vol 97. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7004-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7004-7_7

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7006-1

  • Online ISBN: 978-3-0348-7004-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics