Advertisement

Abstract

Accurate numerical solutions are sought for two dimensional boundary problems in which the function u(x, y) satisfies
$$\begin{array}{*{20}{c}} { - \Delta [u(x,y)] = g(x,y),}&{(x,y) \in \;\Omega }\\ {u(x,y) = f(x,y),}&{(x,y) \in \;\partial {\Omega _1}}\\ {\frac{{\partial u(x,y)}}{{\partial v}} = 0,}&{(x,y) \in \;\partial {\Omega _2}} \end{array}$$
(1.1)
where A is the Laplacian operator, Ω ⊂ E 2 is a simply connected open bounded domain with boundary ∂Ω = ∂Ω1 ⋃ ∂Ω2; ∂Ω2 may be empty; f, g are given functions: and \(\frac{\partial }{{\partial v}}\) is the derivative in the direction of the outward normal to the boundary.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnhill, R. E. and J. A. Gregory: Sard kernel theorems on triangular and rectangular domains with extensions and applications to finite element error bounds. Technical Report TR/11, Dep. of Math., Brunei Univ., 1972.Google Scholar
  2. 2.
    Barnhill, R. E. and J. R. Whiteman: Error analysis of finite element methods with triangles for elliptic boundary value problems. In Whiteman (ed.), The Mathematics of Finite Elements and Applications, Acad. Press, London, 1973.Google Scholar
  3. 3.
    Barnhill, R. E. and J. R. Whiteman: Computable error bounds for the finite element method for elliptic boundary value problems. Proceedings of Sympos. “Numer. Methoden bei Differentialgleichungen”. Math. Forsch. Inst. Oberwolfach, June 1972.Google Scholar
  4. 4.
    Birkhoff, G., Schultz, M. H. and R. S. Varga: Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math. 11 (1968), 232–256.CrossRefGoogle Scholar
  5. 5.
    Bramble, J. H., Hubbard, B. E. and V. Thomêe: Convergence estimates for essentially positive type discrete Dirichlet problems. Math. Comp. 23 (1969), 695–710.CrossRefGoogle Scholar
  6. 6.
    Bramble, J. H. and M. Zlamal: Triangular elements in the finite element method. Math. Comp. 24 (1970), 809–820.CrossRefGoogle Scholar
  7. 7.
    Courant, R., Friedrichs K. O. and H. Levy: Über die partiellen Differenzengleichungen der Mathematischen Physik. Math. Ann. 100 (1928), 37–74.CrossRefGoogle Scholar
  8. 8.
    Fix, G.: Higher-order Rayleigh-Ritz approximations. J. Math. Mech. 18 (1969), 645–657.Google Scholar
  9. 9.
    Gerschgorin, S.: Fehler ab Schätzung für das Differenzenverfahren zur Lösung partieller Differentialgleichungen. ZAMM 10 (1930), 373–382.CrossRefGoogle Scholar
  10. 10.
    Greenspan, D.: Introductory numerical analysis of elliptic boundary value problems. Harper and Row, New York, 1965.Google Scholar
  11. 11.
    Jamet, P.: Numerical methods for singular linear boundary value problems. Doctoral Thesis, Univ. of Wisconsin, Madison, 1967.Google Scholar
  12. 12.
    Jamet, P. and S. V. Parter: Numerical methods for elliptic differential equations whose coefficients are singular on a portion of the boundary. SLAM J. Numer. Anal. 4 (1967), 131–146.CrossRefGoogle Scholar
  13. 13.
    Lavender, M.: M. Tech. Thesis, Brunei Univ., (to appear).Google Scholar
  14. 14.
    Lehman, R. S.: Developments at an analytic corner of solutions of elliptic partial differential equations. J. Math. Mech. 8 (1959), 727–760.Google Scholar
  15. 15.
    Motz, H.: The treatment of singularities in partial differential equations by relaxation methods. Quart.Appl. Math. 4 (1946), 371–377.Google Scholar
  16. 16.
    Petrovskii, I. G.: New proof of the existence of a solution of Dirichlet’s problem by the method of finite-differences. Uspehi Mat. Nauk. 8 (1941), 161–170.Google Scholar
  17. 17.
    Sard, A.: Linear Approximation. Mathematical Survey 9, Amer. Math. Soc. Providence, Rhode Island, 1963.CrossRefGoogle Scholar
  18. 18.
    Wait, R. and A. R. Mitchell: Corner singularities in elliptic problems by finite element methods. J. Comp. Phys. 8 (1971), 45–52.CrossRefGoogle Scholar
  19. 19.
    Whiteman, J. R.: Treatment of singularities in a harmonic mixed boundary-value problem by dual series methods. Q. J. Mech. Appl. Math. 21 (1968), 41–50.CrossRefGoogle Scholar
  20. 20.
    Whiteman, J. R.: Numerical solution of a harmonic mixed boundary value problem by the extension of a dual series method. Q. J. Mech. Appl. Math. 23, (1970), 449–455.CrossRefGoogle Scholar
  21. 21.
    Whiteman, J. R.: An introduction to variational and finite element methods. Lecture Notes, Department of Mathematics, Brunei Univers., Febr. 1972.Google Scholar
  22. 22.
    Whiteman, J. R., N. Papamichael and Q. W. Martin: Conformai transformation methods for the numerical solution of harmonic mixed boundary value problems. Proc. Conf. Appl.of Numer. Anal., Dundee, Lecture Notes in Mathemat. No. 228, Springer-Verlag, Berlin, 1971.Google Scholar
  23. 23.
    Whiteman J. R. and J. C. Webb: Convergence of finite-difference techniques for a harmonic mixed boundary value problem. B. I. T. 10 (1970), 366–374.Google Scholar
  24. 24.
    Woods, L. C.: The relaxation treatment of singular points in Poisson’s equation. Q. J. Mech. Appl. Math. 6 (1953), 163–185.CrossRefGoogle Scholar
  25. 25.
    Zlamal, M.: On the finite element method. Numer. Math. 12 (1968), 394–409.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1974

Authors and Affiliations

  • R. E. Barnhill
    • 1
  • J. R. Whiteman
    • 2
  1. 1.Salt Lake CityUSA
  2. 2.UxbridgeUK

Personalised recommendations