Skip to main content

Effects of Temperature and Sliding Rate on Frictional Strength of Granite

  • Chapter
Friction and Faulting

Abstract

Layers of artificial granite gouge have been deformed on saw-cut granite surfaces inclined 30° to the sample axes. Samples were deformed at a constant confining pressure of 250 MPa and temperatures of 22 to 845 °C. The velocity dependence of the steady-state coefficient of friction (μ ss) was determined by comparing sliding strengths at different sliding rates. The results of these measurements are consistent with those reported by Solberg and Byerlee (1984) at room temperature and Stesky (1975) between 300 and 400 °C. Stesky found that the slip-rate dependence of μ ss increased above 400 °C. In the present study, however, the velocity dependence of μ ss was nearly independent of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bowden, F. P. and Tabor, D. (1964), The Friction and Lubrication of Solids, Part II. Oxford University Press, London.

    Google Scholar 

  • Byerlee, J. D. (1967), Frictional characteristics of granite under high confining pressures. J. Geophys. Res. 72, 3639–3648.

    Article  Google Scholar 

  • Byerlee, J. D. (1968), Brittle-ductile transition in rocks. J. Geophys. Res. 73, 4741–4750.

    Article  Google Scholar 

  • Byerlee, J. D. (1978), Friction of rocks. Pure Appl. Geophys. 116, 615–626.

    Article  Google Scholar 

  • Byerlee, J. D. and Vaughan, P. (1984), Dependence of friction on slip velocity in water saturated granite with added gouge. Trans. Amer. Geophys. Union, EOS 65, 1078.

    Google Scholar 

  • Dieterich, J. H. (1978), Time-dependent friction and the mechanics of stick-slip. Pure Appl. Geophys. 116, 790–806.

    Article  Google Scholar 

  • Dieterich, J. H. (1979), Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. 84, 2161–2168.

    Article  Google Scholar 

  • Dieterich, J. H. (1980), ‘Experimental and model study of fault constitutive properties’, in Solid Earth Geophysics and Geotechnology, 42 (ed. S. Nemet-Nasser), American Society of Mechanical Engineers, New York, pp. 21–29.

    Google Scholar 

  • Dieterich, J. H. (1981), ‘Constitutive properties of faults with simulated gouge’, in Mechanical Behavior of Crustal Rocks, The Handin Volume (ed. N. L. Carter, M. Friedman, J. M. Logan, and D. W. Sterns), Geophysical Monograph Series, No. 24, AGU, pp. 103–120.

    Chapter  Google Scholar 

  • Dieterich, J. H. and Conrad, G. (1984), Effect of humidity of time- and velocity-dependent friction in rocks. J. Geophys. Res. 89, 4196–4202.

    Article  Google Scholar 

  • Gu, J.-C., Rice, J. R., Ruina, A. L. and Tse, S. T. (1984), Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction. J. Mech. Phys. Solids 32, 167–196.

    Article  Google Scholar 

  • Healy, K. A. (1959), The dependence of dilation in sand on rate of shear strain. Ph.D. Thesis, Massachusetts Inst. Technology.

    Google Scholar 

  • Hungr, O. and Morgenstern, N. R. (1984), High velocity ring shear tests on sand. Geotechnique 34, 415–421.

    Article  Google Scholar 

  • Lockner, D. A. and Byerlee, J. D. (1985), A case for displacement-dependent instabilities in rock (Abstract). Trans. Amer. Geophys. Union, EOS 66, 1100.

    Google Scholar 

  • Lockner, D. A. and Byerlee, J. D. (1986), Laboratory measurements of velocity dependent frictional strength. Open File Rept. 86–417, U.S. Geol. Surv., 68p.

    Google Scholar 

  • Mandl, G., De Jong, L. N. J., and Maltha, A. (1977), Shear zones in granular materials. Rock Mech. 9, 95–144.

    Article  Google Scholar 

  • Morgenstern, N. R. and Tchalenko, J. S. (1967), Microscopic structures in kaolin subjected to direct shear. Geotech. 17, 309–328.

    Article  Google Scholar 

  • Morrow, C. and Byerlee, J. D. (1985), A physical explanation for transient stress behavior during shearing of fault gouge at variable strain rates (Abstract). Trans. Amer. Geophys. Union, EOS 66, 1100.

    Google Scholar 

  • Okubo, P. G. and Dieterich, J. H. (1986), State variable fault constitutive relations for dynamic slip, submitted to 5th Ewing Symposium, Earthquake Source Mechanisms, AGU Monograph.

    Google Scholar 

  • Rice, J. R. (1983), Constitutive relations for fault slip and earthquake instabilities. Pure Appl. Geophys. 121, 443–475.

    Article  Google Scholar 

  • Rice, J. R. and Gu, J.-C. (1983), Earthquake aftereffects and triggered seismic phenomena. Pure Appl. Geophys. 121, 187–219.

    Article  Google Scholar 

  • Rice, J. R. and Ruina, A. L. (1983), Stability of steady frictional slipping. Trans. ASME, J. Appl. Mech. 50, 343–349.

    Article  Google Scholar 

  • Ruina, A. L. (1980), Friction laws and instabilities: A quasistatic analysis of some dry frictional behavior. Ph.D. Thesis, Brown University.

    Google Scholar 

  • Ruina, A. L. Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370.

    Google Scholar 

  • Schneider, H. (1977), The time-dependence of friction of rock joints. Bull. Int. Assoc. Engin. Geol., No. 16, 235–239.

    Article  Google Scholar 

  • Scholz, C. H. and Engelder, J. T. (1976), The role of asperity indentations and ploughing in rock friction: I. Asperity creep and stick slip. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 13, 149–154.

    Article  Google Scholar 

  • Shimamoto, T. (1985), Confining pressure reduction experiments: A new method for measuring frictional strength over a wide range of normal stress. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22, 227–236.

    Article  Google Scholar 

  • Shimamoto, T. (1986), Transition between frictional slip and ductile flow for halite shear zones at room temperature. Science 231, 711–714.

    Article  Google Scholar 

  • Shimamoto, T. and Logan, J. M. (1986), Velocity-dependent behaviors of simulated halite shear zones: An analog for silicates, submitted to 5th Maurice Ewing Symposium, Earthquake Source Mechanics, AGU Monograph.

    Google Scholar 

  • Skempton, A. W. (1985), Residual strength of clays in landslides, folded strata and the laboratory. Geotechnique 35, 3–18.

    Article  Google Scholar 

  • Solberg, P. and Byerlee, J. D. (1984), A note on the rate sensitivity of frictional sliding of Westerly granite. J. Geophys. Res. 89, 4203–4205.

    Article  Google Scholar 

  • Stesky, R. M. (1975), The mechanical behavior of faulted rock at high temperature and pressure. Ph.D. Thesis, Massachusetts Inst. Technology.

    Google Scholar 

  • Stesky, R. M. (1978), Mechanisms of high-temperature frictional sliding in Westerly granite. Can. J. Earth Sci. 15, 361–375.

    Article  Google Scholar 

  • Summers, R., Lockner, D. A. and Byerlee, J. D. (1985), Temperature and velocity dependence of friction in granite (Abstract), Trans Amer. Geophys. Union, E05 66, 1100.

    Google Scholar 

  • Tchalenko, J. S. (1970), Similarities between shear zones of different magnitudes. Geol. Soc. Amer. Bull. 81, 1625–1640.

    Article  Google Scholar 

  • Teufel, L. W. (1981), Frictional properties of jointed welded tuff. Sandia National Laboratories, SAND 81–0212.

    Google Scholar 

  • Teufel, L. W. and Logan, J. M. (1978), Effect of displacement rate on the area of contact and temperatures generated during frictional sliding of Tennessee sandstone. Pure Appl. Geophys. 116, 840–865.

    Article  Google Scholar 

  • Tse, S. T. and Rice, J. R. (1986), Crystal earthquake instability in relation to the depth variation of frictional slip properties. J. Geophys. Res. 91, 9452–9472.

    Article  Google Scholar 

  • Tullis, T. E. and Weeks, J. D. (1986), Constitutive behavior and stability of frictional sliding of granite. Pure Appl. Geophys. 124 No. 3, 383.

    Article  Google Scholar 

  • Weeks, J. and Tullis, T. (1984), Frictional behavior of dolomite. Trans. Amer. Geophys. Union, EOS 65, 1077.

    Google Scholar 

  • Weeks, J. and Tullis, T. (1985), Frictional behavior of dolomite: A variation in constitutive behavior. J. Geophys. Res. 90, 7821–7826.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Basel AG

About this chapter

Cite this chapter

Lockner, D.A., Summers, R., Byerlee, J.D. (1986). Effects of Temperature and Sliding Rate on Frictional Strength of Granite. In: Tullis, T.E. (eds) Friction and Faulting. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6601-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6601-9_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-1862-8

  • Online ISBN: 978-3-0348-6601-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics