Skip to main content

Minimal Joule Dissipation Models of Magnetospheric Convection

  • Chapter
Ionospheric Modelling

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 66 Accesses

Abstract

This paper gives a topical review of theoretical models of magnetospheric convection based on the concept of minimal Joule dissipation. A two-dimensional slab model of the ionosphere featuring an enhanced conductivity auroral oval is used to compute high-latitude electric fields and currents. Mathematical methods used in the modeling include Fourier analysis, fast Fourier transforms, and variational calculus. Also, conformai transformations are introduced in the analysis, which enable the auroral oval to be represented as a nonconcentric, crescent-shaped figure. Convection patterns appropriate to geomagnetic quiet and disturbed conditions are computed, the differentiating variable being the relative amount of power dissipated in the magnetospheric ring current. When ring current dissipation is small, the convection electric field is restricted to high latitudes (shielding regime), and when it is large, a significant penetration of the field to low latitudes occurs, accompanied by an increase in the ratio of the region 1 current to the region 2 current.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfvën, H. (1939), Theory of magnetic storms. I, Kungl. Sv. Vetenskaakad. Handl. 18, (3).

    Google Scholar 

  • Axford, W. A. and Hines, C. O. (1961), A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can. J. Phys. 39, 1433–1464.

    Article  Google Scholar 

  • Banks, P. M, Araki, T., Clauer, C. R., St. Maurice, J. P., and Foster, J. C. (1984), The interplanetary electric field, cleft currents and plasma convection in the polar caps. Planet. Space Sci. 32, 1551–1557.

    Article  Google Scholar 

  • Barbosa, D. D. (1979a), Field-aligned current sources in the high-latitude ionosphere. Ann. Geophys. 35, 111–119.

    Google Scholar 

  • Barbosa, D. D. (1979b), High-latitude field-aligned current sources and induced electric fields. J. Geophys. Res. 84, 5175–5180.

    Article  Google Scholar 

  • Barbosa, D. D. (1984a), Dynamics of field-aligned current sources at Earth and Jupiter. In Magnetospheric Currents (ed. Potemra, T. A.) (American Geophysical Union, Washington, D.C. 1984), pp. 350–357.

    Chapter  Google Scholar 

  • Barbosa, D. D. (1984b), Fourier analysis of polar cap electric field and current distributions. J. Geophys. Res. 89, 867–875.

    Article  Google Scholar 

  • Barbosa, D. D. (1984c), An energy principle for high-latitude electrodynamics. J. Geophys. Res. 89, 2881–2890.

    Article  Google Scholar 

  • Barbosa, D. D. (1985), Polar convection patterns under quiet conditions. J. Geophys. Res. 90, 9711–9716.

    Article  Google Scholar 

  • Chapman, S. and Ferraro, V. C. A. (1931), A new theory of magnetic storms. Terr. Mag. 36, 77–97, 171–186.

    Article  Google Scholar 

  • Chen, A. J. (1970), Penetration of low-energy protons deep into the magnetosphere. J. Geophys. Res. 75, 2458–2467.

    Article  Google Scholar 

  • Churchill, R. V., Brown, J. W., and Verhey, R. F., Complex Variables and Applications (3rd ed.), (McGraw-Hill, New York 1974), pp. 314–324.

    Google Scholar 

  • Daniell, R. E., Jr. and Cloutier, P. A. (1977), Distribution of ionospheric currents induced by the solar wind interaction with Venus. Planet. Space Sci. 25, 621–628.

    Article  Google Scholar 

  • Dungey, J. W. (1961), Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47–18.

    Article  Google Scholar 

  • Fontaine, D. and Blanc, M. (1983), A theoretical approach to the morphology of the diffuse auroral zones. J. Geophys. Res. 88, 7171–7184.

    Article  Google Scholar 

  • Foster, J. C., Holt, J. M., Musgrove, R. G., and Evans, D. S. (1986), Ionospheric convection associated with discrete levels of particle precipitation. Geophys. Res. Lett. 13, 656–659.

    Article  Google Scholar 

  • Friis-Christensen, E., Kamide, Y., Richmond, A. D., and Matsushita, S. (1985), Interplanetary magnetic field control of high-latitude electric fields and currents determined from Greenland magnetometer data. J. Geophys. Res. 90, 1325–1338.

    Article  Google Scholar 

  • Hardy, D. A., Gussenhoven, M. S., and Holeman, E. (1985), A statistical model of auroral electron precipitation, J. Geophys. Res. 90, 4229–4248.

    Article  Google Scholar 

  • Holt, J. M., Wand, R. H., Evans, J. V., and Oliver, W. L. (1987), Empirical models for the plasma convection at high latitudes from Millstone Hill observations, J. Geophys. Res. 92, 203–212.

    Article  Google Scholar 

  • Iijima, T. and Potemra, T. A. (1978), Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res. 83, 599–615.

    Article  Google Scholar 

  • Iwasaki, N. and Nishida, A. (1967), Ionospheric current system produced by an external electric field in the polar cap. Rep. Ionos. Space Res. Jap. 21, 17–27.

    Google Scholar 

  • Kamide, Y. and Matsushita, S. (1979), Simulation studies of ionospheric electric fields and currents in relation to field-aligned currents 1. Quiet periods. J. Geophys. Res. 84, 4083–4093.

    Article  Google Scholar 

  • Kamide, Y. and Richmond, A. D. (1986), Recent advances in studies of magnetosphere-ionosphere coupling, J. Geomag. Geoelectr. 38, 653–714.

    Article  Google Scholar 

  • Kavanaugh, L. D., Jr., Freeman, J. W. Jr., and Chen, A. J. (1968), Plasma flow in the magnetosphere. J. Geophys. Res. 73, 5511–5519.

    Article  Google Scholar 

  • Maxwell, J. C., A Treatise on Electricity and Magnetism (vol. I), (Clarendon, Oxford 1873), pp. 345–359.

    Google Scholar 

  • Parker, E. N. (1958a), Dynamics of interplanetary gas and magnetic fields, Astrophys. J. 128, 664–685.

    Article  Google Scholar 

  • Parker, E. N. (1958b), Interaction of the solar wind with the geomagnetic field, Phys. Fluids 1, 171–187.

    Article  Google Scholar 

  • Piddington, J. H. (1960), A theory of polar geomagnetic storms. Geophys. J. R. Astr. Soc. 3, 314–332.

    Article  Google Scholar 

  • Piddington, J. H. (1962), A hydromagnetic theory of geomagnetic storms and auroras. Planet. Space Sci. 9, 947–957.

    Article  Google Scholar 

  • Potemra, T. A., Magnetospheric Currents (American Geophysical Union, Washington, D.C. 1984).

    Book  Google Scholar 

  • Rees, D., Fuller-Rowell, T. J., Gordon, R., Smith, M. F., Maynard, N. C, Heppner, J. P., Spencer, N. N., Wharton, L., Hays, P. B., and Killeen, T. L. (1986), A theoretical and empirical study of the response of the high latitude thermosphere to the sense of the ‘Y’ component of the interplanetary magnetic field. Planet. Space Sci. 34, 1–40.

    Article  Google Scholar 

  • Schield, M. A., Freeman, J. W., and Dessler, A. J. (1969), A source for field-aligned currents at auroral latitudes, J. Geophys. Res. 14, 247–256.

    Article  Google Scholar 

  • Siscoe, G. L. (1982), Energy coupling between regions 1 and 2 Birkeland current systems, J. Geophys. Res. 87, 5124–5130.

    Article  Google Scholar 

  • Spiro, R. W., Reiff, P. H., and Maher, L. J. (1982), Precipitating electron energy flux and auroral zone conductances—an empirical model, J. Geophys. Res. 87, 8215–8227.

    Article  Google Scholar 

  • Vasyliunas, V. M. (1968), Discussion of paper by Harold E. Taylor and Edward W. Hones, Jr., ‘Adiabatic motion of auroral particles in a model of the electric and magnetic field surrounding the Earth’, J. Geophys. Res. 73, 5805–5807.

    Article  Google Scholar 

  • Vasyliunas, V. M., Mathematical models of magnetospheric convection and its coupling to the ionosphere, In Particles and Fields in the Magnetosphere (ed. McCormac, B. M.) (Reidel, Dordrecht 1970), pp. 60–71.

    Chapter  Google Scholar 

  • Vasyliunas, V. M., The interrelationship of magnetospheric processes, In Earth’s magnetospheric Processes (ed. McCormac, B. M.) (Reidel, Dordrecht 1972), pp. 29–38.

    Chapter  Google Scholar 

  • Vickrey, J. F., Vondrak, R. R., and Mathews, S. J. (1981), The diurnal and latitudinal variation of auroral zone ionospheric conductivity. J. Geophys. Res. 86, 65–75.

    Article  Google Scholar 

  • Yasuhara, F., Kamide, Y., and Akasofu, S.-I. (1975), Field-aligned and ionospheric currents. Planet. Space Sci. 23, 1355–1368.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Basel AG

About this chapter

Cite this chapter

Barbosa, D.D. (1988). Minimal Joule Dissipation Models of Magnetospheric Convection. In: Korenkov, J.N. (eds) Ionospheric Modelling. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6532-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6532-6_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-6534-0

  • Online ISBN: 978-3-0348-6532-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics