Skip to main content

Structural Relationships between Monomeric Surfactants and Their Aggregates

  • Chapter

Abstract

We like to discuss in this article several aspects of the self-assembling characteristics of synthetic bilayer membranes. Surfactant molecules spontaneously assemble in water to form various types of aggregates. Two prominent groups of aggregate are micelles and bilayer membranes. Aqueous micelles are spherical or near-spherical globules with the fluid hydrophobic core. They are usually produced from single alkyl-chain amphiphiles. In contrast, many double alkyl-chain amphiphiles undergo spontaneous assemblage to bilayer membranes. Subsequent research efforts established that the spontaneous formation of bilayer membranes is a rather general physicochemical phenomenon. Synthetic bilayers can assume a large variety of aggregate morphologies. They are determined by several structural characteristics. The structural aspects of synthetic bilayer which are described in this article are:

  1. (1)

    Bilayer Formation

  2. (2)

    Component Orientation

  3. (3)

    Surface Curvature

  4. (4)

    Helical Superstructure

  5. (5)

    Dynamics of Morphology

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Kunitake and Y. Okahata, J. Am. Chem. Soc., 99, 3860(1977) and the subsequent papers.

    Article  Google Scholar 

  2. T. Kunitake, Y. Okahata, K. Tamaki, F. Kumamaru, and M. Takayanagi, Chem. Lett., 1977, 387.

    Google Scholar 

  3. T. Kunitake, N. Nakashima, S. Hayashida, and T. Yonemori,, Chem. Lett., 1977, 1413.

    Google Scholar 

  4. E. J. R. Sudhölter, J. B. F. N. Engberts, and D. Hoekstra, J. Am. Chem. Soc., 102, 2467(1980).

    Article  Google Scholar 

  5. Y. Murakami, A. Nakano, K. Fukuya, J. Am. Chem. Soc., 102, 4235(1980).

    Google Scholar 

  6. T. Kunitake and Y. Okahata, Bull. Chem. Soc. Jpn., 51, 1877(1978).

    Article  Google Scholar 

  7. R. A. Mortara, R. H. Quina, and H. Chaimovich, Biochem. Biophys. Res. Commun. 81, 1080 (1978).

    Article  Google Scholar 

  8. Y. Okahata, S. Tanamachi, M. Nagai, and T. Kunitake, J. Colloid Interface Sci., 82, 401(1981).

    Article  Google Scholar 

  9. T. Kunitake, Y. Okahata, and S. Tawaki, J. Colloid Interface Sci., in press.

    Google Scholar 

  10. T. Kunitake and Y. Okahata, J. Am. Chem. Soc., 102, 549(1980)

    Article  Google Scholar 

  11. T. Kunitake, Y. Okahata, M. Shimomura, S. Yasunami, and K. Takarabe, J. Am. Chem. Soc., 103, 450(1981).

    Google Scholar 

  12. M. Shimomura, H. Hashimoto, and T. Kunitake, Chem. Lett., 1982, 1285.

    Google Scholar 

  13. T. Kunitake, N. Kimizuka, N. Higashi, and N. Nakashima, J. Am. Chem. Soc., 106, 1978(1984).

    Article  Google Scholar 

  14. T. Kunitake, Y. Okahata, and S. Yasunami, J. Am. Chem.Soc., 104, 5547(1982).

    Article  Google Scholar 

  15. T. Kunitake, S. Tawaki, and N. Nakashima, Bull. Chem. Soc. Jpn., 56, 3235(1983).

    Article  Google Scholar 

  16. T. Kunitake and N. Higashi, J. Am. Chem. Soc., in press.

    Google Scholar 

  17. Y. Okahata and T. Kunitake, J. Am. Chem. Soc., 101, 5231(1979)

    Article  Google Scholar 

  18. J. H. Fuhrhop and J. Mathieu, Angew. Chem. Int. Ed. Engl. 23, 100(1984)

    Article  Google Scholar 

  19. E. Baumgartner and J. H. Fuhrhop, Angew. Chem. 92, 564(1980).

    Article  Google Scholar 

  20. T. Kunitake, et al. J. Am. Chem. Soc., 103, 5945(1981).

    Article  Google Scholar 

  21. J. H. Fendler and P. Tundo, Acc. Chem. Res. 17, 3(1984).

    Article  Google Scholar 

  22. A. Akimoto, K. Dorn, L. Gros, H. Ringsdorf, and H. Schupp, Angew. Chem. Int. Ed. Engl. 20, 90(1981).

    Article  Google Scholar 

  23. M. Shimomura, R. Ando, and T. Kunitake, Ber. Bunsenges Phys. Chem., 87, 1134(1983).

    Article  Google Scholar 

  24. M. Kasha in “Spectroscopy of Excited States”, p 337 ed B. D. Bartolo, Plenum Press, New York 1976.

    Chapter  Google Scholar 

  25. M. Shimomura, T. Kunitake, T. Kajiyama, A. Harada, K. Okuyama and M. Takayanagi, Thin Solid Films, 119, No. 1.

    Google Scholar 

  26. C. Tanford, “Hydrophobic Effect. Formation of Micelles & Biological Membranes” 2nd ed., Wiley-Interscience, New York, 1980.

    Google Scholar 

  27. J. N. Israelachvili, D. J. Mitchell, and B. W. Ninham, J. Chem. Soc. Faraday Trans. 2, 72, 1575(1976).

    Google Scholar 

  28. J. Mitchell and B. W. Ninham, J. Chem. Soc. Faraday Trans. 2, 77, 601(1981)

    Google Scholar 

  29. Y. Murakami, A. Nakano, and H. Ikeda, J. Org. Chem., 47, 2137(1983).

    Article  Google Scholar 

  30. N. Nakashima, H. Fukushima, and T. Kunitake, Chem. Lett., 1981, 1207.

    Google Scholar 

  31. N. Nakashima, S. Asakuma, J.-M. Kim, and T. Kunitake Chem. Lett., 1984, 1709.

    Google Scholar 

  32. K. Yamada, H. Ihara, T. Ide, T. Fukumoto, and C. Hirayama, Chem. Lett., 1984, 1713.

    Google Scholar 

  33. R. Virchow, Virchows Archiv, 6, 571(1854) as cited in H. Kelker, Mol. Cryst. Liq. Cryst. 21, 1(1973).

    Google Scholar 

  34. K.-C. Lin, R. M. Weis, and H. H. McConnel, Nature, 296, 164(1982).

    Article  Google Scholar 

  35. I. Sakurai and Y. Kawamura, personal communication.

    Google Scholar 

  36. W. Harbich, R. M. Servuss, and W. Helfrich, Phys. Lett., 57A, 294(1976).

    Article  Google Scholar 

  37. E. Boroske, M. Elwenspoek, and W. Helfrich, Biophys. J., 34, 95(1981).

    Article  Google Scholar 

  38. P. Yager, J. P. Sheridan, and W. L. Peticolas, Biochim. Biophys. Acta, 639, 485(1982).

    Article  Google Scholar 

  39. H. Hotani, and S. Ohnishi, Seibutshu-butshuri(Biophysics), 22, S39 (1982).

    Google Scholar 

  40. W. E. Bacon, M. E. Neubert, P. J. Wildman, and D. W. Ott, Mol. Cryst. Liq. Cryst., 90, 307(1983).

    Article  Google Scholar 

  41. N. Nakashima, S. Asakuma, T. Kunitake, and H. Hotani, Chem. Lett., 1984, 227.

    Google Scholar 

  42. B. Kachar, D. F. Evans, and B. W. Ninham, J. Colloid Interface Sci., 100, 287(1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Basel AG

About this chapter

Cite this chapter

Kunitake, T. (1985). Structural Relationships between Monomeric Surfactants and Their Aggregates. In: Eicke, HF. (eds) Modern Trends of Colloid Science in Chemistry and Biology. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6513-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6513-5_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-1711-9

  • Online ISBN: 978-3-0348-6513-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics