Skip to main content

Weak Approximation of a Nonlinear Stochastic Partial Differential Equation

  • Chapter
Random Partial Differential Equations

Abstract

Consider the following formal initial-boundary value problem

$$[tex]\left\{ {\begin{array}{*{20}{c}}{\frac{\partial }{{\partial t}}u(t,x) = \frac{{{\partial ^2}}}{{\partial {x^2}}}u(t,x) + f(u(t,x)) + \sigma \zeta (t,x),{\kern 1pt} \quad t > 0,x \in (0,1),} \\{u(0,x) = {u_0}(x),\quad x \in [0,1]} \\{u(t,0) = u(t,1) = 0,\quad t \ge 0,} \\\end{array}} \right.[/tex]$$
((D))

which was investigated by many authors from quite different viewpoints (cf.[1],[3],[6]-[10]). Let (Ω𝔉,ℙ) denote the basic complete probability space and suppose that u0:Ω×[0,1] → ℝ is pathwise continuous. If ξ is a space-time GAUSSian white noise, i.e. a centered GAUSSian 𝔇 (ℝ+ ×[0,1])-valued random element with covariance functional

$$[tex]E\zeta (\varphi )\zeta (\psi ) = \int_{{_ + }} {\int_0^1 {\varphi (t,x)\psi (t,x)dxdt,} } [/tex]$$

then (D) represents only a symbol (𝔇′ denotes the space of SCHWARTZ distributions.). Indeed, in the considered case of a one-dimensional space parameter x∈[0, 1] it is possible to give (D) a precise mathematical meaning as follows. Let W denote a BROWNian sheet, i.e. a pathwise continuous centered GAUSSian random field defined on (math) with covariance function

$$[tex]EW(t,x)W(s,y) = (t \wedge s)(x \wedge y).[/tex]$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. DA PRATO, J. ZABCZYK: A Note on Semilinear Stochastic Equations, Diff. and Integr. Equ. 1–2 (1988) 143–155

    Google Scholar 

  2. D.A. DAWSON: Stochastic Evolution Equations and Related Measure Processes, J. Multivariate Anal. 5–1 (1975) 1–52

    Article  Google Scholar 

  3. W.G. FARIS, G. JONA-LASINIO: Large fluctuation for a nonlinear heat equation with noise, J. Phys.A:Math.Gen. 15 (1982) 3025–3055

    Article  Google Scholar 

  4. K.-H. FICHTHEB, M. SCHMIDT: Approximation of a continuous system by point systems, SERDICA 13 (1987) 396–402

    Google Scholar 

  5. K.-H. FICHTNER, R. MANTHEY: Weak Approximation of Stochastic Equations, to appear

    Google Scholar 

  6. T. FUNAKI: Random Motions of Strings and Related Stochastic Evolution Equations, Nagoya Math. J. 89 (1983) 129–193

    Google Scholar 

  7. K. IWATA: An Infinite Dimensional Stochastic Differential Equation with State Space C(K), Prob. Th. Bel.Fields 74 (1987) 141–159

    Article  Google Scholar 

  8. R. MANTHEY: Weak Convergence of Solutions of the Heat Equation with Gaussian Noise, Math. Nachr. 123 (1985) 157–168

    Article  Google Scholar 

  9. R. MANTHEY: On the Cauchy Problem for Reaction-Diffusion Equations with White Noise, Math. Nachr. 136 (1988) 209–228

    Article  Google Scholar 

  10. R. MANTHEY: Reaktions-Diffusionsgleichungen mit weißem Rauschen, Diss.B, Friedrich-Schiller-Oniversität, Jena, 1988

    Google Scholar 

  11. R. MANTHEY: On the Notion of Solution to Stochastic Partial Differential Equations with Additive White Noise, submitted

    Google Scholar 

  12. R. MANTHEY, B. MASLOWSKI: Qualitative Behaviour of Solutions to Stochastic Reaction-Diffusion Equations, to appear

    Google Scholar 

  13. J.B. WALSH: A Stochastic Model of Neural Response, Adv.Appl. Prob. 13 (1981) 231–281

    Article  Google Scholar 

  14. J.B. WALSH: An Introduction to Stochastic Partial Differential Equations, Lecture Notes in Mathematics, Vol. 1180, Springer, 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Basel AG

About this chapter

Cite this chapter

Manthey, R. (1991). Weak Approximation of a Nonlinear Stochastic Partial Differential Equation. In: Hornung, U., Kotelenez, P., Papanicolaou, G. (eds) Random Partial Differential Equations. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, vol 102. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6413-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6413-8_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-6415-2

  • Online ISBN: 978-3-0348-6413-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics