Skip to main content

Fractured but Not Fractal: Fragmentation of the Gulf of Suez Basement

  • Chapter
Fractals in Geophysics

Part of the book series: Pure and Applied Geophysics ((PTV))

  • 334 Accesses

Abstract

Recent geophysical studies revealed that the Palaeozoic basement of the Gulf of Suez consists of an enormous number of fault blocks whose network qualitatively resembles the contractioncrack polygons which can be found in nature in a wide variety of materials and on all scales (mud cracks, hardening concrete, age cracking in paintings, etc.). The fault network of the Gulf of Suez basement forms a rather uniformly spaced polygonal pattern, most of the blocks are four-sided, the lengths of block sides parallel with the Gulf of Suez axis are exponentially distributed. The power-law size distribution associated with the fractal (scale-free) fragmentation can be possibly ruled out.

The paper calls attention to the necessity of classifying the physical processes leading to fragmentations with exponential-, lognormal-, and power-law size distributions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AllĂ gre C. J., Le Mouel, J. L., and Provost, A. (1982), Scaling Rules in Rock Fracture and Possible Implications for Earthquake Prediction, Nature 297, 47–49.

    Article  Google Scholar 

  • Allen, T., Particle Size Measurement (Chapman and Hall, London 1968).

    Google Scholar 

  • Bader, H. (1970), The Hyperbolic Distribution of Particle Sizes, Journal Geoph. Res. 75, 2822–2830.

    Article  Google Scholar 

  • Barenblatt, G. I.; Zhivago, A. V., Neprochnov, Yu. P., and Ostrovskiy, A. A. (1984), Fractal Dimension: A Quantitive Characteristic of the Ocean Bottom Geomorphological Evolution Processes, Okeonologiya 24, 924–928 (In Russian).

    Google Scholar 

  • Billings, M. P., Structural Geology (Prentice Hall, New York 1954).

    Google Scholar 

  • Brown, W. K., Karp, R. R., and Grady, D. Z. (1983), Fragmentation of the Universe, Astrophys. and Space Science 94, 401–412.

    Article  Google Scholar 

  • Curl, R. L. (1986), Fractal Dimensions and Geometries of Caves, Math. Geol. 18, 765–783.

    Article  Google Scholar 

  • Dionne, J. C. (1971), Polygonal Patterns in Muddy Tidal Flats, J. Sed. Petr. 41, 835–883.

    Article  Google Scholar 

  • Epstein, B. (1947), The Mathematical Description of Certain Breakage Mechanisms Leading to the Logarithmico-normal Distribution, J. Franklin Inst. 244, 411–411.

    Article  Google Scholar 

  • Fujiwara, A., Kamimoto, G., and Tsukamoto, A. (1977), Destruction of Basaltic Bodies by High Velocity Impact, ICARUS 31, 277–288.

    Article  Google Scholar 

  • Gilvarry, J. J. (1964), Fracture of Brittle Solids. I. Distribution Function for Fragment Size in Single Fracture. (Theoretical), J. Appl. Phys. 32, 391–399.

    Article  Google Scholar 

  • Griffith, L. (1943), A Theory of the Size Distribution of Particles in a Comminuted System, Can. J. Research 21A, 57–64.

    Article  Google Scholar 

  • Hammouda, H. M. (1986), Study and Interpretation of Basement Structural Configuration in the Southern Part of Gulf of Suez using Aeromagnetic and Gravity data, Ph.D. Thesis, Faculty of Science, Cairo University.

    Google Scholar 

  • Hartmann, W. K. (1969), Terrestrial, Lunar and Interplanetary Rock Fragmentation, Icarus 10, 201–213.

    Article  Google Scholar 

  • Henderson-Sellers, A. (1986), Are Martian Clouds Fractals? Quart. J. R. Astr. Soc. 27, 90–93.

    Google Scholar 

  • Jarrige, J. J., D’Estevou, P. O., Burollet, P. F., Thiriet, J. P., Icart, J. C., Richert, J. P., Sehans, P., Montenat, C., and Prat, P. (1986), Inherited Discontinuities and Neogene Structure: The Gulf of Suez and the Northwestern Edge of the Red Sea, Phil. Trans. R. Soc. Lond. A317, 129–139.

    Article  Google Scholar 

  • Keck, C. K., A Handbook on the Care of Paintings (Am. Assoc. for State and Local History 1965).

    Google Scholar 

  • Kendall, M. G., and Moran, P. A. P., Geometrical Probability (Griffin and Co., London 1963).

    Google Scholar 

  • Kent, C., and Wong, J. (1982), An Index of Littoral Zone Complexity and its Measurement, Can. J. Fish. Aquat. Sci. 39, 847–853.

    Article  Google Scholar 

  • King, G. (1983), The Accomodation of Large Strains in the Upper Lithosphere of the Earth and Other Solids by Self-similar Fault-systems: The Geometrical Origin of b-value, Pure Appl. Geophys. 121, 761–815.

    Article  Google Scholar 

  • KorÄŤak, J. (1940), Deux types fondamentaux de distribution statistique, Bull. Inst. Int. Stat. 30, 295–299.

    Google Scholar 

  • Kranz, R. L. (1983), Microcracks in rocks: A review, Tectonophysics 100, 449–480.

    Article  Google Scholar 

  • Lachenbruch, A. H. (1962), Mechanics of Thermal Contraction Cracks and Ice-wedge Polygons in Permafrost, Geol. Soc. Am. Spec. Paper 70, 69 pp.

    Google Scholar 

  • Louis, E., Guinea, F., and Flores, F., The fractal nature of fracture, In Fractals in Physics (ed. Pietronero, L. and Tosatti, E.) (Elsevier, Amsterdam-New York 1986) pp. 177–180.

    Google Scholar 

  • Lovejoy, S. (1982), Area-perimeter Relation for Rain and Cloud Areas, Science 216, 185–187.

    Article  Google Scholar 

  • Lung, C. W., Fractals and the fracture of cracked metals, In Fractals in Physics (ed. Pietronero, L. and Tosatti, E.) (Elsevier, Amsterdam-New York 1986) pp. 189–192.

    Google Scholar 

  • Madden, T. R. (1983), Microcrack Connectivity in Rocks: A Renormalisation Group Approach to the Critical Phenomena of Conduction and Failure in Crystalline Rocks, J. Geophys. Res. 88, 585–592.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1975), Stochastic models for the Earth’s Relief, the Shape and the Fractal Dimension of the Coastlines, and the Number-area Rule for Islands, Proc. Nat. Acad. Sci. USA 72, 3825–3828.

    Article  Google Scholar 

  • Mandelbrot, B. B., The Fractal Geometry of Nature (Freeman, San Francisco 1982).

    Google Scholar 

  • Mandelbrot, B. B., Passoja, D. E., and Paullay, A. J. (1984), Fractal Character of Fracture Surfaces of Metals, Nature 308, 721–722.

    Article  Google Scholar 

  • Matsushita, M. (1985), Fractal viewpoint of Fracture and Accretion, J. Phys. Soc. Japan. 54, 857–860.

    Article  Google Scholar 

  • Neal, J. T., Langer, A. M., and Kerr, P. F. (1968), Giant Desiccation Polygons of Great Basin Playas, Geol. Soc. Amer. Bull. 79, 69–70.

    Article  Google Scholar 

  • Nelson, R. A. (1979), Natural Fracture Systems: Description and Classification, Am. Assoc. Petr. Geologists Bull. 63, 2214–2232.

    Google Scholar 

  • Okubo, P. G., and Aki, K. (1987), Fractal Geometry in the San Andreas Fault System, Journal Geoph. Res. 92B, 345–355.

    Article  Google Scholar 

  • Plummer, P. S., and Gostin, V. A. (1981), Shrinkage Cracks: Desiccation or Synaeresis? J. Sed. Petr. 51, 1147–1156.

    Google Scholar 

  • Rothrock, D. A., and Thorndike, A. S. (1984), Measuring the Sea Ice Floe Size Distribution, J. Geophys. Res. 89C, 6477–6486.

    Article  Google Scholar 

  • Said, R., The Geology of Egypt (Elsevier, Amsterdam-New York 1962).

    Google Scholar 

  • Scholz, Ch. H., and Aviles, C. A., The fractal geometry of faults and faulting, In Earthquake Source Mechanics (eds. Das, S., Boatwright, J. and Scholz, Ch. H.) (Geoph. Monograph 37, Maurice Ewing Volume 6, American Geoph. Union, Wash. D.C. 1986), pp. 147–155.

    Chapter  Google Scholar 

  • Segall, P., and Pollard, D. D. (1983), Joint Formation in Granite Rock of the Sierra Nevada, Geol. Soc. Am. Bull. 94, 563–575.

    Article  Google Scholar 

  • Segnit, E. R., Anderson, C. A., and Jones, J. B. (1970), A Scanning Microscope Study of the Morphology of Opal, Search 1, 349–351.

    Google Scholar 

  • Termonia, Y., and Meakin, P. (1986), Formation of Fractal Cracks in a Kinetic Fracture Model, Nature 320, 429–431.

    Article  Google Scholar 

  • Thompson, D’Arcy W., On Growth and Form (Cambridge University Press, Cambridge 1942).

    Google Scholar 

  • Turcotte, D. L. (1986), Fractals and Fragmentation, J. Geophys. Res. 91B, 1921–1926.

    Article  Google Scholar 

  • Walker, J. (1986), Cracks in a Surface Look Intricately Random but Actually Develop Rather Systematically, Sei. Am. 25(4), 178–186.

    Google Scholar 

  • Willden, R., and Mabey, D. R. (1961), Giant Desiccation Fissures on the Black Rock and Smoke Creek Deserts, Nevada, Science 133, 1359–1360.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Basel AG

About this chapter

Cite this chapter

Korvin, G. (1989). Fractured but Not Fractal: Fragmentation of the Gulf of Suez Basement. In: Scholz, C.H., Mandelbrot, B.B. (eds) Fractals in Geophysics. Pure and Applied Geophysics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6389-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6389-6_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-6391-9

  • Online ISBN: 978-3-0348-6389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics