Skip to main content

Quadrature Formulas For Convex Classes of Functions

  • Chapter

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 112))

Abstract

In this paper we study problems of optimal recovery in the case of a nonsymmetric convex class of functions. We concentrate on the reconstruction of linear functionals, i.e., the problem of optimal numerical integration. We begin with a class of convex functions. We prove that adaption cannot help in the worst case, but considerably helps in the case of Monte Carlo methods.

We give examples for linear problems on a convex set where (deterministic) adaptive methods are much better than nonadaptive ones.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • N. S. Bakhvalov (1959): On approximate computation of integrals. Vestnik MGU, Ser. Math. Mech. Astron. Phys. Chem. 4, 3–18. [Russian]

    Google Scholar 

  • N. S. Bakhvalov (1971): On the optimality of linear methods for operator approximation in convex classes of functions. USSR Comput. Math. Math. Phys. 11, 244–249. [Russian original: Zh. vychisl. Mat. mat. Fiz. 11, 244–249]

    Article  Google Scholar 

  • H. Braß (1982): Zur Quadraturtheorie konvexer Funktionen. In: G. Hämmerlin (ed.), Numerical integration, pp. 34–47, ISNM 57.

    Google Scholar 

  • K.-J. Förster, K. Petras (1990): On a problem proposed by H. Braß concerning the remainder term in quadrature for convex functions. Numer. Math. 57, 763–777.

    Article  Google Scholar 

  • S. Gal, C. A. Micchelli (1980): Optimal sequential and non-sequential procedures for evaluating a functional. Appl. Anal. 10, 105–120.

    Article  Google Scholar 

  • I. A. Glinkin (1983): Optimal algorithms for integrating convex functions. Math. USSR Comput. Maths. Math. Phys. 23(2), 6–12. [Russian original: Zh. vychisl. Mat. mat. Fiz. 23(2), 267–277]

    Article  Google Scholar 

  • I. A. Glinkin (1984): Best quadrature formula in the class of convex functions. Math. Notes 35, 368–374. [Russian original: Mat. Zametki 35, 697–707]

    Article  Google Scholar 

  • R. Gorenflo, S. Vessella (1991): Abel Integral Equations. Lecture Notes in Mathematics 1461, Springer-Verlag.

    Google Scholar 

  • G. Heindl (1982): Optimal quadrature of convex functions. In “Numerical Integration”, ISNM 57, 138–147.

    Google Scholar 

  • I. P. Huerta (1986): Adaption helps for some nonconvex classes. J. Complexity 2, 333–352.

    Article  Google Scholar 

  • A. Iserles, G. Söderlind (1992): Global bounds on numerical error for ordinary differential equations. Numerical Analysis Reports, University of Cambridge, England, to appear in J. Complexity

    Google Scholar 

  • J. Kiefer (1957): Optimum sequential search and approximation methods under minimum regularity assumptions. J. Soc. Indust. Appl. Math. 5, 105–136.

    Article  Google Scholar 

  • M. A. Kon, E. Novak (1989): On the adaptive and continuous information problems. J. Complexity 5, 345–362.

    Article  Google Scholar 

  • M. A. Kon, E. Novak (1990): The adaption problem for approximating linear operators. Bull. Amer. Math. Soc. 23, 159–165.

    Article  Google Scholar 

  • N. P. Korneichuk (1993): Optimization of active algorithms for recovery of functions from the class Lip-α. To appear in J. Complexity

    Google Scholar 

  • C. A. Micchelli, T. J. Rivlin (1977): A survey of optimal recovery. In: Optimal estimation in approximation theory, C. A. Micchelli and T. J. Rivlin (eds.), Plenum Press, New York.

    Google Scholar 

  • C. A. Micchelli, T. J. Rivlin (1985): Lectures in optimal recovery. Lecture Notes in Math. 1129, Springer.

    Google Scholar 

  • E. Novak (1988a): Deterministic and stochastic error bounds in numerical analysis. Lecture Notes in Mathematics 1349, Springer.

    Google Scholar 

  • E. Novak (1988b): Stochastic properties of quadrature formulas. Numer. Math. 53, 609–620.

    Article  Google Scholar 

  • E. Novak (1992): Quadrature formulas for monotone functions. Proc. Amer. Math. Soc. 115, 59–68.

    Article  Google Scholar 

  • E. Novak (1993): Optimal recovery and n-widths for convex classes of functions. In preparation.

    Google Scholar 

  • A. Papageorgiou (1992): Integration of monotone functions of several variables. To appear in J. Complexity

    Google Scholar 

  • K. Petras (1993): Quadrature theory of convex functions. These proceedings.

    Google Scholar 

  • K. Ritter, G. W. Wasilkowski, H. Wońniakowski (1993): On multivariate integration for stochastic processes. These proceedings.

    Google Scholar 

  • A. Schnorr (1992): Optimale Verfahren zur Integration konvexer Funktionen. Diplomarbeit, Mathematisches Institut Erlangen.

    Google Scholar 

  • G. Sonnevend (1983): An optimal sequential algorithm for the uniform approximation of convex functions on [0,1]2. Appl. Math. Optirn. 10, 127–142.

    Article  Google Scholar 

  • A. G. Sukharev (1986): On the existence of optimal affine methods for approximating linear functionals. J. Complexity 2, 317–322.

    Article  Google Scholar 

  • V. M. Tikhomirov (1990): Approximation theory. In: Encyclopaedia of Mathematical Sciences, Vol. 14, Springer-Verlag. [The Russian original was published by Publisher VINITI, Moscow 1987, R. V. Gamkrelidze, ed.]

    Google Scholar 

  • J. F. Traub, G. W. Wasilkowski, H. Wožniakowski (1988): Information-based complexity. Academic Press.

    Google Scholar 

  • J. F. Traub, H. Wońniakowski (1980): A general theory of optimal algorithms. Academic Press.

    Google Scholar 

  • G. W. Wasilkowski, F. Gao (1992): On the power of adaptive information for functions with singularities. Math, of Comp. 58, 285–304.

    Article  Google Scholar 

  • G. W. Wasilkowski, H. Wožniakowski (1984): Can adaption help on the average?, Numer. Math. 44, 169–190.

    Article  Google Scholar 

  • D. Zwick (1988): Optimal quadrature for convex functions and generalizations. In: Numerical Integration III, H. Braß, G. Hämmerlin (eds.), ISNM 85, 310–315.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Basel AG

About this chapter

Cite this chapter

Novak, E. (1993). Quadrature Formulas For Convex Classes of Functions. In: Brass, H., Hämmerlin, G. (eds) Numerical Integration IV. ISNM International Series of Numerical Mathematics, vol 112. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6338-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6338-4_22

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-6340-7

  • Online ISBN: 978-3-0348-6338-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics