Skip to main content

Identities and Inequalities via Symmetrization

  • Chapter

Abstract

The purpose of this survey paper is to examine some specific applications of the process of averaging over finite groups, compact topological groups, and compact homogeneous manifolds. These applications occur in a variety of different disciplines of pure and applied mathematics, such as (i) classical representation theory of finite groups, (ii) practical Fourier analysis, (iii) classical harmonic analysis, (iv) approximation theory, (v) complex analysis in several variables, and (vi) combinatorics. In each case, the symmetrization technique reveals itself to be a simple and efficient tool to produce far-reaching identities and inequalities in a unifying manner.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Auslander and R. Tolimieri, Is computing with the finite Fourier transform pure of applied mathematics? Bull. Amer. Math. Soc. 1 (1979), 847–897.

    Article  Google Scholar 

  2. D.L. Berman, On the impossibility of constructing a linear polynomial operator giving an approximation of best order. Uspehi Mat. Nauk 14 (1959), 141–142.

    Google Scholar 

  3. E.W. Cheney, Introduction to Approximation Theory. McGraw-Hill Book Company, New York, St. Louis, San Francisco, Toronto, London, Sydney, 1966.

    Google Scholar 

  4. R.R. Coifman and G. Weiss, Representations of compact groups and spherical harmonics. Enseignement Math. 14 (1960), 121–173.

    Google Scholar 

  5. C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras. Interscience Publishers, New York, London, Sydney, 1962.

    Google Scholar 

  6. P. Delsarte, J.M. Goethals, and J.J. Seidel, Spherical codes and designs. Geometriae Dedicata 6 (1977), 363–388.

    Article  Google Scholar 

  7. B. Dreseler and W. Schempp, On the Charshiladze-Lozinski theorem for compact topological groups and homogeneous spaces. Manuscripta Math. 13 (1974), 321–337.

    Article  Google Scholar 

  8. J.M. Goethals and J.J. Seidel, Spherical designs. In: Relations between Combinatorics and Other Parts of Mathematics. (Proc. Symp. Pure Math., Vol. 34). Amer. Math. Soc, Providence, R.I., 1979.

    Google Scholar 

  9. A. Hurwitz, Über die Erzeugung der Invarianten durch Integration. Nachr. k. Ges. Göttingen, Math.-phys. Klasse 1897, 71–90. Also in: Mathematische Werke, Band II, pp. 546-564. Birkhäuser, Basel, 1933.

    Google Scholar 

  10. N. Jacobson, Basic Algebra II. W.H. Freeman and Company, San Francisco, 1980.

    Google Scholar 

  11. F. Lorenz and A. Schönhage, Über ein zahlentheoretisches Problem aus der Fourieranalysis. Math. Z. 120 (1971), 369–372.

    Article  Google Scholar 

  12. S. Lozinski, On a class of linear operators. Doklady Akad. Nauk SSSR 61 (1948), 193–196.

    Google Scholar 

  13. J. Marcinkiewicz, Quelques remarques sur l’interpolation. Acta Litt. Sci. Szeged 8 (1936/37), 127–130. Also in: Collected papers, pp. 200-203. Państwowe Wydawnictwo Naukowe, Warszawa, 1964.

    Google Scholar 

  14. H. Maschke, Über den arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen. Math. Ann. 50 (1898), 482–498.

    Google Scholar 

  15. D.J. Newman, The nonexistence of projections from L1 to H1. Proc. Amer. Math. Soc. 12 (1961), 98–99.

    Google Scholar 

  16. W. Rudin, Projections on invariant subspaces. Proc. Amer. Math. Soc. 13 (1962), 429–432.

    Article  Google Scholar 

  17. W. Rudin, Function Theory in the Unit Ball of C n (Grundlehren der math. Wissenschaften 241). Springer-Verlag, New York, Heidelberg, Berlin, 1980.

    Book  Google Scholar 

  18. W. Schempp, Approximation on compact Riemannian globally symmetric manifolds of rank one. J. Approx. Theory 21 (1977), 236–245.

    Article  Google Scholar 

  19. W. Schempp, Approxmation in G-homogeneous Banach spaces. In: Constructive Theory of Functions of Several Variables. (Proc. Conf. Oberwolfach 1976, W. Schempp and K. Zeller, Eds., Lecture Notes in in Math., Vol. 571, pp. 220-225). Springer-Verlag, Berlin, Heidelberg, New York, 1977.

    Chapter  Google Scholar 

  20. W. Schempp, A note on the Newman-Schoenberg phenomenon. Math. Z. 167 (1979), 1–6.

    Article  Google Scholar 

  21. W. Schempp, Periodic splines and nilpotent harmonic analysis. C.R. Math. ReP. Acad. Sci. Canada 3 (1981), 69–74.

    Google Scholar 

  22. W. Schempp, Approximation und Transformationsmethoden III. In: Approximation and Functional Analysis (Proc. Conf. Oberwolfach 1980, P.L. Butzer, E. Görlich, and B. Sz.-Nagy, Eds., ISNM 60). Birkhäuser Verlag, Basel, Boston, Stuttgart, 1981.

    Google Scholar 

  23. W. Schempp, Attenuation factors and nilpotent harmonic analysis. Resultate Math, (in press).

    Google Scholar 

  24. W. Schempp, Complex Contour Integral Representation of Cardinal Spline Functions. With a preface by I.J. Schoenberg (Contemporary Mathematics). Amer. Math. Soc, Providence, R.I. (in press).

    Google Scholar 

  25. W. Schempp, Cardinal splines and nilpotent harmonic analysis (to appear).

    Google Scholar 

  26. W. Schempp, Harmonic Analysis on Heisenberg Groups with Applications to Spline Functions (Research Notes in Mathematics). Pitman, San Francisco, London, Melbourne (in preparation).

    Google Scholar 

  27. W. Schempp, Gruppentheoretische Aspekte der digitalen Signalübertragung und der kardinalen Splines (to appear).

    Google Scholar 

  28. W. Schempp and B. Dreseler, Einführung in die harmonische Analyse (Mathematische Leitfäden). Teubner, Stuttgart, 1980.

    Google Scholar 

  29. V.M. Sidelnikov, New bounds for the density of sphere packings in an n-dimensional Euclidean space. Math. USSR Sbornik 24 (1974), 147–157.

    Article  Google Scholar 

  30. H. Weyl, The Classical Groups, their Invariants and Representations. Princeton University Press, Princeton, N.J. 1939.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Basel AG

About this chapter

Cite this chapter

Schempp, W. (1983). Identities and Inequalities via Symmetrization. In: Beckenbach, E.F., Walter, W. (eds) General Inequalities 3. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol 64. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6290-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6290-5_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-6292-9

  • Online ISBN: 978-3-0348-6290-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics