We consider a generalization of Wronskian methodsfor the case of one and several variables. The integral representation is based on the construction of a system of differential operators associated with the basis interpolant functions and en the Neumann’s kernel. Examples are given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    ARCANGELI R, J.L. GOUT: Rairo-Analyse numérique 10 (1976), 5–27Google Scholar
  2. (2).
    BERGMAN, SCHIFFER: Kernel functions and differential equations (Academic Press (1953).Google Scholar
  3. (3).
    CHENIN P.: Thèse 3ème cycle Grenoble 1974Google Scholar
  4. (4).
    CHENIN P.: Rapport-de recherche n° 71 Laboratoire IMAG Grenoble (1977)Google Scholar
  5. (5).
    CHENIN P.: To be published in Numerische MathematikGoogle Scholar
  6. (6).
    CIARLET P.G., RAVIART P.A: Arch. Rational Mech. Anal. 46 (1972) 177–199CrossRefGoogle Scholar
  7. (7).
    DAVIS: Interpolation and Approximation (1965)Google Scholar
  8. (8).
    GORDON W.J: Blending function Methods of Bivariate and Multivariate Interpolation and Approximation SIAM J. Num. Anal. Vol 8 n° 1 (1971)158–177CrossRefGoogle Scholar
  9. (9).
    MEINGUET J.; Rairo-Analyse numérique 11 (1977) 355–368Google Scholar
  10. (10).
    TITCHMARCH: Eigenfunction expansions (Part II) Oxford University Press (1958)Google Scholar

Copyright information

© Springer Basel AG 1979

Authors and Affiliations

  • Patrick Chenin
    • 1
  1. 1.Laboratoire IMAGUniversité de GrenobleGrenobleFrance

Personalised recommendations