On the Exact Degree of Approximation of Bernstein Operators on C([0,1]2)

  • F. Schurer
  • F. W. Steutel
Part of the ISNM International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’Analyse Numérique book series (ISNM, volume 51)


Exact constants are determined for the approximation of continuous functions by Bernstein polynomials of two variables. Furthermore, the limiting behaviour of these constants is obtained.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Baskakov, V.A., On a construction of linear positive operators for functions of two variables. Izv. Vysš. Učebn. Zaved. Matematika 4 (35) (1963), 7–14 (Russian).Google Scholar
  2. [2]
    Cramer, H., Random variables and probability distributions. Cambridge University Press, Cambridge, 1963.Google Scholar
  3. [3]
    Esseen, C.G., Über die asymptotisch beste Approximation stetiger Funktionen mit Hilfe von Bernstein-Polynomen, Numer. Math. 2 (1960), 206–213.CrossRefGoogle Scholar
  4. [4]
    Feller, W., An introduction to probability theory and its applications, vol. 2. Wiley, New York, 1971.Google Scholar
  5. [5]
    Ipatov, A.F., On an error estimate and the degree of approximation for functions of two variables with Bernstein polynomials, Učen. Zap. Karel. Ped.Inst.Ser.Fiz.-Mat.Nauk 4 (1955), 31–48 (Russian).Google Scholar
  6. [6]
    Johnson, N.L. and S. Kotz, Discrete distributions, Houghton Mifflin, New York, 1969.Google Scholar
  7. [7]
    Moldovan, G. and I. Rip, On an inequality in approximation theory for functions of two variables with Bernstein polynomials. Stud. Cere. Mat. 18 (1966), 845–853 (Roumanian).Google Scholar
  8. [8]
    Schurer, F., On the order of approximation with generalized Bernstein polynomials, Indag. Math. 24 (1962), 484–488.Google Scholar
  9. [9]
    Schurer, F. and F.W. Steutel, The degree of local approximation of functions in C [0,1] by Bernstein polynomials. J. Approximation Theory 19 (1977), 69–82.CrossRefGoogle Scholar
  10. [10]
    Sikkema, P.C., über den Grad der Approximation mit Bernstein-Polynomen, Numer. Math. 1 (1959), 221–239.CrossRefGoogle Scholar
  11. [11]
    Sikkema, P.C., Der Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen, Numer. Math. 3 (1961), 107–116.CrossRefGoogle Scholar
  12. [12]
    Stancu, D.D., On some polynomials of Bernstein type. Stud. Cere. Stiint. Mat. 11 (1960), 221–233 (Roumanian).Google Scholar

Copyright information

© Springer Basel AG 1979

Authors and Affiliations

  • F. Schurer
    • 1
  • F. W. Steutel
    • 1
  1. 1.Department of MathematicsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations