The purpose of this paper is to discuss the dimension of linear spaces of piecewise polynomials defined on triangulations of the plane. Such spaces are of considerable interest in general approximation and data fitting, as well as in the numerical solution of boundary-value problems by the finite-element method. We begin by defining the notion of triangulation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Fredrickson, P. [1970] Triangular spline interpolation, Report 670, Whitehead University, Canada.Google Scholar
  2. Heindl, G. [1968] Über verallgemeinerte Stammfunktionen und LC — Funktionen im R, dissertation, Technical Universität, München.Google Scholar
  3. Heindl, G. [1970] Spline-Funktionen mehrerer Veränderlicher. I, Bayerische Akad. 6, 49–63.Google Scholar
  4. Morgan, J. and R. Scott [1975] A nodal basis for C piecewise polynomials of degreen ≥. 5, Math. Comp. 29, 736–740.Google Scholar
  5. Morgan, J. and R. Scott[1977] The dimension of the space of C piecewise polynomials, manuscript.Google Scholar
  6. Powell, M.J.D. [1974] Piecewise quadratic surface fitting for contour plotting, in Software for Numerical Analysis, D.J. Evans (ed.), Academic Press, 253–271.Google Scholar
  7. Strang, G. [1974] The dimension of piecewise polynomials, and one sided approximation, Lecture Notes 365, Springer-Verlag, 144–152.Google Scholar
  8. Zwart, P. [1973] Multi-variate splines with non-degenerate partitions, SIAM J. Numer. Anal. 10, 665–673.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1979

Authors and Affiliations

  • Larry L. Schumaker
    • 1
    • 2
  1. 1.Department of MathematicsThe University of TexasAustinUSA
  2. 2.Hahn-Meitner InstituteFree University of BerlinGermany

Personalised recommendations