Advertisement

Abstract

Bivariate approximations present, in general, more difficulties than in the univariate case. But often they can to a certain extent be reduced to univariate approximations. Here we treat some approaches of this kind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Brown, J.A., Henry, M.S.: Best Chebyshev composite approximation. SIAM J. Numer. Anal. 12, 336–344 (1975).CrossRefGoogle Scholar
  2. [2]
    Ehlich, H., Zeller, K.: Schwankung von Polynomen zwischen Gitterpunkten. Math. Z. 86, 41–44 (1964).CrossRefGoogle Scholar
  3. [3]
    Ehlich, H., Zeller, K.: Numerische Abschätzung von Polynomen. ZAMM 45, T20-T22 (1965).Google Scholar
  4. [4]
    Ehlich, H., Zeller, K.: Auswertung von Normen von Interpolationsoperatoren. Math. Annalen 164, 105–112 (1966).CrossRefGoogle Scholar
  5. [5]
    Gordon, W.J.: Blending function methods of bivariate and multivariate interpolation and approximation. SIAM J. Numer. Anal. 8, 158–177 (1971).CrossRefGoogle Scholar
  6. [6]
    Haußmann, W., Pottinger, P.: On the construction and convergence of multivariate interpolation operators. J. Approx. Theory 19, 205–221 (1977).CrossRefGoogle Scholar
  7. [7]
    Scherer, R.: Ober Fehlerschranken bei Produkt-Kubatur, Erscheint in ZAMM.Google Scholar
  8. [8]
    Scherer, R., Zeller, K.: Gestufte Approximation in zwei Variablen. Erscheint in: Collatz, L. et al. (Ed.): Numerische Verfahren der Approximationstheorie. Tagungsbericht, Oberwolfach 1979.Google Scholar
  9. [9]
    Schönhage, A.: Fehlerfortpflanzung bei Interpolation. Numer. Math. 3, 62–71 (1961).CrossRefGoogle Scholar
  10. [10]
    Weinstein, S.E.: Approximations of functions of several variables. Product Chebyshev approximations, I. J. Approx. Theory 2, 433–447 (1969).CrossRefGoogle Scholar
  11. [11]
    Weinstein, S.E.: Product approximations of functions of several variables. SIAM J. Numer. Anal. 8, 178–189 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1979

Authors and Affiliations

  • R. Scherer
    • 1
  • K. Zeller
    • 1
  1. 1.Mathematisches InstitutUniversität TübingenTübingenDeutschland

Personalised recommendations