Advertisement

Best Approximations to Polynomials in the Mean and Norms of Coefficient-Functionals

  • Manfred Reimer
Part of the ISNM International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’Analyse Numérique book series (ISNM, volume 51)

Abstract

A special family of polynomials is investigated by which, on the unit-sphere, the problem of best approximation in the mean to monomials by polynomials of lower degree can be solved. Vice versa, these polynomials are extremal with respect to their leading coefficient. For homogeneous harmonic polynomials, a similar problem can be treated and a bound for the coefficients is obtained, which improves an earlier result of Kellogg essentially.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. [1]
    Àngelesco, A.: Sur les polynomes généralisant les polynomes de Legendre et dfHermite et sur le calcul approché des integrales multiples. Diss. Paris 1916.Google Scholar
  2. [2]
    Appell, D. and Kampé de Feriet, J.: Fonctions Hypergéometriques et Hypersphériques. Gauthier- Villard: Paris 1926.Google Scholar
  3. [3]
    Erdelyi, A., ed.: Higher transcendental functions. V. 2 McGraw-Hill: New York 1953.Google Scholar
  4. [4]
    Fromm, J.: Tschebyscheff-Polynome in mehreren Veränderlichen. Diss. Dortmund 1975.Google Scholar
  5. [5]
    Kellogg, O. D.: On bounded polynomials in several variables. Math. Z. 27, 55–64 (1927).CrossRefGoogle Scholar
  6. [6]
    Müller, C.: Spherical harmonics. Springer: Berlin- Heidelberg-New York 1966.Google Scholar
  7. [7]
    Reimer, M.: On multivariate polynomials of least deviation from zero on the unit ball. Math. Z. 153, 51–58 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1979

Authors and Affiliations

  • Manfred Reimer
    • 1
  1. 1.Mathematisches InstitutUniversität DortmundDortmund 50W-Germany

Personalised recommendations