Advertisement

Abstract

For best approximations of vector-valued functions in certain norms, specialications of the Kolmogorov criterion are given. These specializations depend on the norm used in the range ℝn of the vector-valued functions. The case where the norm in ℝn is expressible in terms of a scalar product in ℝn and the case where the norm is the maximum norm are treated explicitly. Hints are given for other norms. There are examples of complex approximations given, which may be regarded as simultaneous approximations of two real functions defined on a two dimensional region.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Collatz und W. Krabs: Approximationstheorie, Stuttgart, Teubner 1973.Google Scholar
  2. [2]
    D. Gaier: Konstruktive Methoden der konformen Abbildung. Berlin, Göttingen, Heidelberg. Springer 1964.CrossRefGoogle Scholar
  3. [3]
    W. Krabs: Optimierung und Approximation, Stuttgart, Teubner 1975.Google Scholar
  4. [4]
    F. Matta and A. Reichel: Uniform computation of the Error Function and Other Related Functions. Math. Comp. 25 (1971), 339–344.CrossRefGoogle Scholar
  5. [5]
    G. Opfer: An Algorithm for the Construction of Best Approximations Based on Kolmogorov’s Criterion. J. Approximation Theory 23 (1978), 299–317.CrossRefGoogle Scholar
  6. [6]
    G. Opfer: New Extremal Properties for Constructing Conformai Mappings, (to appear in Numerische Mathematik)Google Scholar
  7. [7]
    G. Opfer and R. Schultz: On Characterization and Computation of Complex Approximations in the 1-norm. (to appear)Google Scholar
  8. [8]
    R. Schultz: Ein Abstiegsverfahren für Approximationsaufgaben in normierten Räumen, Numer.Math. 31 (1978), 77–95.CrossRefGoogle Scholar
  9. [9]
    I. Singer: Best Approximations in Normed Linear Spaces by Elements of Linear Subspaces. Berlin, Heidelberg, New York, Springer 1970.Google Scholar

Copyright information

© Springer Basel AG 1979

Authors and Affiliations

  • Gerhard Opfer
    • 1
  1. 1.Institut für Angewandte MathematikUniversität HamburgHamburg 13Germany (Fed. Rep.)

Personalised recommendations