Advertisement

Abstract

Throughout this paper, all functions and vector spaces we shall consider are complex, m and n are fixed integers ≥1, E ≡ ℝn is the Euclidean n-space of all n-tuples of real numbers, P≡Pm-1 is the (complex) vector space of dimension
$$(\mathop n\limits^{m + n - 1} )$$
(1)
of all polynomials in n variables of (total) degree ≤m-1, |.| is the (Sobo-lev-like) seminorm (of kernel P) generated by the rotation invariant semi-inner product (on various suitable spaces of distributions to be specified later) where
$$(v,w): = \sum\limits_{{i_1},...,{i_m} = 1}^n {\int_{{\mathbb{R}^n}} {{\partial _i}.{i_m}v( \times ){\partial _{{i_1}}}} ...{i_m}\mathop w\limits^ - (x)dx}$$
(2)
where \({\partial _{{i_1}}}...{i_m}: = {\partial ^m}/\partial {x_{{i_1}}}...\partial {x_{{i_m}}}\) is to be interpreted in the distributional sense. All integrals will be taken with respect to the Lebesgue measure on E (this is quite natural in view of the importance of translations of E). As usual, V denotes the vector space of test functions in E (i.e., infinitely differentiable functions with compact support in E), provided with the canonical Schwartz topology, while V (i.e., the dual of V) is the vector space of distributions in E.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agmon, S. : Lectures on Elliptic Boundary Value Problems. Princeton : Van Nostrand 1965-Google Scholar
  2. 2.
    Hardy, G.H., Littlewood, J.E. and Polya, G. : Inequalities. London : Cambridge University Press 1934.Google Scholar
  3. 3.
    Meinguet, J. : An Intrinsic Approach to Multivariate Spline Interpolation at Arbitrary Points. Polynomial and Spline Approximation — Theory and Applications (B.N. Sahney ed.), 163–190. Dordrecht : D. Reidel Publishing Company 1979.Google Scholar
  4. 4.
    Meinguet, J. : Multivariate Interpolation at Arbitrary Points Made Simple. ZAMP (to appear in 19.79).Google Scholar
  5. 5.
    Meinguet, J. : Basic Mathematical Aspects of Surface Spline Interpolation. Proceedings of the Conference on Numerical Integration, Oberwol-fach 1978 (G. Hämmerlin ed.). Basel : Birkhäuser Verlag (to appear in 1979).Google Scholar
  6. 6.
    du Plessis, N. : Some Theorems about the Riesz Fractional Integral, Trans. Amer. Math. Soc. 80, 124–134 (1955).Google Scholar
  7. 7.
    Schwartz, L. : Théorie des Distributions. Paris : Hermann 1966.Google Scholar
  8. 8.
    Sobolev, S. : Sur un théorème d’analyse fonctionnelle, Mat. Sb. 46, 471–497 (1938) (Russian, French summary).Google Scholar
  9. 9.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton : Princeton University Press 1970.Google Scholar
  10. 10.
    Stein, E.M. and Weiss, G. : Introduction to Fourier Analysis on Euclidean Spaces. Princeton : Princeton University Press 1971.Google Scholar
  11. 11.
    Vo-Khac Khoan : Distributions, Analyse de Fourier, Opérateurs aux Dérivées Partielles, 2 volumes. Paris : Vuibert 1972.Google Scholar

Copyright information

© Springer Basel AG 1979

Authors and Affiliations

  • Jean Meinguet

There are no affiliations available

Personalised recommendations