Interpolation and Approximation by Piecewise Quadratic C1 — Functions of Two Variables

  • Gerhard Heindl
Part of the ISNM International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’Analyse Numérique book series (ISNM, volume 51)


This paper presents solutions of some two-dimensional Hermite interpolation problems by C1- interpolants, the restrictions of which to the triangles of a given plane simplicial complex are quadratic polynomials. Approximation properties of the interpolating functions are studied.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ALEXANDROFF, P. and HOPF, H.: Topologie. Chelsea Publishing Company, Bronx, New York (1965), (Textually unaltered reprint of the original edition published in Berlin in 1935).Google Scholar
  2. 2.
    CIARLET, P.G. and RAVIART, P.A.: General Lagrange and Hermite Interpolation in ℝn with Applications to Finite Element Methods. Arch. Rational Mech. Anal. 46, 177 – 199 (1972).CrossRefGoogle Scholar
  3. 3.
    HEINDL, G.: Spline — Funktionen mehrerer Veränderlicher. I Definition und Erzeugung durch Integration. Sitz. Ber. Bayer. Akad. Wiss. Math. Nat. Kl. 49–63 (1969).Google Scholar
  4. 4.
    MEINGUET, J.: Structure et estimations de coefficients d’erreurs, R.A.I.R.O. Analyse Numérique, vol. 11, n° 4, 355 – 368, (1977).Google Scholar
  5. 5.
    MEINGUET, J.: A practical method for estimating approximation errors in Sobolev spaces, Institut de Mathematique Pure et Appliquée, Université Catholique de Louvain, Séminaires de Mathématique Appliquée et Mécanique, Rapport n° 104 (1977).Google Scholar
  6. 6.
    POWELL, M.J.D.: Piecewise quadratic surface fitting for contour plotting, in Software for Numerical Analysis, D.J. Evans, ed., Academic Press, 253–272 (1974).Google Scholar
  7. 7.
    ZWART, P.B.: Multivariate splines with nondegenerate partitions, SIAM J. Numer. Anal. 10, 665–673 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1979

Authors and Affiliations

  • Gerhard Heindl

There are no affiliations available

Personalised recommendations