Advertisement

Boolean Methods in Bivariate Reduced Hermite Interpolation

  • Günter Baszenski
  • Horst Posdorf
  • Franz-Jürgen Delvos
Chapter
Part of the ISNM International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’Analyse Numérique book series (ISNM, volume 51)

Abstract

WATKINS and LANCASTER [8] constructed a family of C° — conforming Finite Elements which is an extension of the MELKES-family [6] .

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. [1]
    CHENEY, E. W., GORDON, W. J.: Bivariate and Multivariate Interpolation with Non- commutative Projectors. In: Linear Spaces and Approximation. Eds.: P. L. Butzer, B. Sz.-Nagy. ISNM 40 (1977), 381–387.Google Scholar
  2. [2]
    DELVOS, F. J., POSDORF, H.: Nth Order Blending. In: Constructive Theorie of Functions of Several Variables. Eds.: W. Schempp, K. Zeller. Lecture Notes in-Maths 571 (1977), 53–64.CrossRefGoogle Scholar
  3. [3]
    DELVOS, F. J., POSDORF, H.: A Representation Formula for Reduced Hermite Interpolation. In: Numerische Methoden der Approximationstheorie, Band 4. Eds.: L. Collatz, G. Meinardus, H. Werner. ISNM 42 (1978), 124–137.CrossRefGoogle Scholar
  4. [4]
    GORDON, W. J.: Distributive Lattices and the Approximation of Multivariate Functions. Proc Symp Approximation with Special Emphasis on Spline Functions (Madison, Wisc. 1969). Ed.: I. J. Schoenberg. 223–277.Google Scholar
  5. [5]
    GORDON, W. J.: Blending Function Methods of Bivariate and Multivariate Interpolation and Approximation. SIAM, J. Num. Anal., Vol. 8, No. 1 (1971), 158–177.CrossRefGoogle Scholar
  6. [6]
    MELKES, F.: Reduced Piecewise Bivariate Hermite Interpolation. Num. Math. 19 (1972), 326–340.CrossRefGoogle Scholar
  7. [7]
    PHILLIPS, G. M.: Explicit Forms for Certain Hermite Approximations. BIT 13 (1973), 177–180.CrossRefGoogle Scholar
  8. [8]
    WATKINS, D. S., LANCASTER, P.: Some Families of Finite Elements. J. Inst. Maths Applies 19 (1977), 385–397.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1979

Authors and Affiliations

  • Günter Baszenski
    • 1
  • Horst Posdorf
    • 1
  • Franz-Jürgen Delvos
    • 2
  1. 1.RechenzentrumRuhr-Universität BochumBochumFed. Rep. of Germany
  2. 2.Lehrstuhl für Mathematik IGesamthochschule SiegenSiegen 21Fed. Rep. of Germany

Personalised recommendations