Skip to main content

Towards a New View of Earthquake Phenomena

  • Chapter
Fractals and Chaos in the Earth Sciences

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 114 Accesses

Abstract

Recent advances in the theory of fracture and fragmentation are reviewed. Empirical laws in seismology are interpreted from a fractal perspective, and earthquakes are viewed as a self-organized critical phenomenon (SOC). Earthquakes occur as an energy dissipation process in the earth’s crust to which the tectonic energy is continuously input. The crust self-organizes into the critical state and the temporal and spatial fractal structure emerges naturally. Power-law relations known in seismology are the expression of the critical state of the crust. An SOC model for earthquakes, which explains the Gutenberg-Richter relation, the Omori’s formula of aftershocks and the fractal distribution of hypocenters, is presented. A new view of earthquake phenomena shares a common standpoint with other disciplines to study natural complex phenomena with a unified theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, K. (1979), Characterization of Barriers on an Earthquake Fault, J. Geophys. Res. 84, 6140–6148.

    Article  Google Scholar 

  • Aki, K., A probabilistic synthesis of precursory phenomena. In Earthquake Prediction: An International Review, M. Ewing Ser., vol. 4 (eds. Simpson, D. W., and Richards, P. G.) (AGU, Washington, D. C. 1981) pp. 566–574.

    Google Scholar 

  • Allegre, C. J., Le Mouel, and Provost, A. (1982), Scaling Rules in Rock Fracture and Possible Implications for Earthquake Prediction, Nature 297, A7–A9.

    Article  Google Scholar 

  • Atmanspacher, H., Schneingraber, H., and Wiedenmann, G. (1989), Determination of f(α) for a Limited Random Point Set, Phys. Rev. A40, 3954–3963.

    Google Scholar 

  • Bak, P., and Tang, C. (1989), Earthquakes as a Self-organized Critical Phenomenon, J. Geophys. Res. 94, 15, 635–15,637.

    Google Scholar 

  • Bak, P., Tang, C., and Wiesenfeld, K. (1987), Self-organized Criticality: An Explanation of 1/f Noise, Phys. Rev. Lett. 59, 381–384.

    Article  Google Scholar 

  • Bak, P., Tang, C., and Wiesenfeld, K. (1988), Self-organized Criticality, Phys. Rev. A38, 364–371.

    Google Scholar 

  • Bak, P., Chen, K., and Creutz, M. (1989), Self-organized Criticality in the ‘Game of Life’ Nature 342, 780–782.

    Article  Google Scholar 

  • Bebbington, M., Vere-Jones, D., and Zheng, X. (1990), Percolation Theory: A Model for Rock Fracture? Geophys. J. Int. 100, 215–220.

    Article  Google Scholar 

  • Burridge, R., and Knopoff, L. (1967), Model and Theoretical Seismicity, Bull. Seismol. Soc. Am. 57, 341–371.

    Google Scholar 

  • Carlson, J. M., and Langer, J. S. (1989), Properties of Earthquakes Generated by Fault Dynamics, Phys. Rev. Lett. 62, 2632–2635.

    Article  Google Scholar 

  • Chen, K., Bak, P., and Obukhov, S. P. (1991), Self-organized Criticality in Crack-progagation Model of Earthquakes, Phys. Rev. A43, 625–630.

    Google Scholar 

  • Dhar, D., and Ramaswamy, R. (1989), Exactly Solved Model of Self-organized Critical Phenomena, Phys. Rev. Lett. 63, 1659–1662.

    Article  Google Scholar 

  • Durrett, R. (1988), Crabgrass, Measles, and Gypsy Moths: An Introduction to Interacting Particle Systems, Mathemat. Intelligence 10, 31–41.

    Google Scholar 

  • Enya, O. (1901), On Aftershocks, Rep. Earthq. Inv. Comm. 35, 35–56 (in Japanese).

    Google Scholar 

  • Gardner, M. (1970), Mathematical Games, Sci. Am. 223(10), 120–123.

    Article  Google Scholar 

  • Geilikman, M. B., Golubeva, T. V., and Pisarenko, V. F. (1990), Multifractal Patterns of Seismicity, Earth Planet. Sci. Lett. 99, 127–132.

    Article  Google Scholar 

  • Glansdorff, P., and Prigogine, I., Theory of Structure Stability and Fluctuations (Wiley and Sons, London 1971).

    Google Scholar 

  • Griffith, A. A. (1921), The Phenomena of Rupture and Flow in Solids, Phil. Trans. R. Soc. A221, 163–198.

    Google Scholar 

  • Griffith, A. A. (1924), The Theory of Rupture, Proc. 1st Intern. Cong. Appl. Mech., Delft, pp. 55-63.

    Google Scholar 

  • Haken, H., Synergetics: Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry and Biology (Springer, Berlin 1977).

    Google Scholar 

  • Haken, H., Advanced Synergetics (Springer, Berlin 1983).

    Google Scholar 

  • Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., and Shraiman, B. I. (1986), Fractal Measures and their Singularities: The Characterization of Strange Sets, Phys. Rev. A33, 1141–1151.

    Google Scholar 

  • Haskell, N. A. (1969), Elastic Displacements in the Near Field of a Propagating Fault, Bull. Seismol. Soc. Am. 59, 865–908.

    Google Scholar 

  • Herrmann, H. J., and Roux, S., eds., Statistical Models for the Fracture of Disordered Media (Elsevier, Amsterdam 1990).

    Google Scholar 

  • Herrmann, H. J., Fractures. In Fractals and Disordered Systems (eds. Bunde, A., and Havlin, S.) (Springer-Verlag, 1991) pp. 175-205.

    Google Scholar 

  • Hirabayashi, T., and Ito, K. (1990), Multifractal Analysis of Earthquakes, Pure and Appl. Geophys., this issue.

    Google Scholar 

  • Hirata, T. (1987), Omor’s Power Law Aftershock Sequences of Microfracturing in Rock Fracturing Experiment, J. Geophys. Res. 92, 6215–6221.

    Article  Google Scholar 

  • Hirata, T., and Imoto, M. (1991), Multifractal Analysis of Spatial Distribution of Microearthquakes in the Konto Region, Geophys. J. Int. 107, 155–162.

    Article  Google Scholar 

  • Hirata, T., Satoh, T., and Ito, K. (1987), Fractal Structure of Spatial Distribution of Microfracturing in Rock, Geophys. J. R. Astr. Soc. 67, 697–717.

    Google Scholar 

  • Hwa, T., and Kardar, M. (1989), Fractals and Self-organized Criticality in Dissipative Dynamics, Physica D38, 198–202.

    Google Scholar 

  • Ishimoto, M., and Iida, K. (1939), Observations sur les seisms energistré par le microseismograph construite dernierment (I), Bull. Earthq. Res. Inst. 17, 443–478 (in Japanese).

    Google Scholar 

  • Ito, K., and Matsuzaki, M. (1990), Earthquakes as Self-organized Critical Phenomena, J. Geophys. Res. 95, 6853–6860.

    Article  Google Scholar 

  • Jensen, M. H., Kadanoff, K., Libchaber, A., Procaccia, I., and Stavans, J. (1985); Global Universality at the Onset of Chaos: Results of a Forced Rayleigh-Benard Experiment, Phys. Rev. Lett. 55, 2798–2801.

    Article  Google Scholar 

  • Kagan, Y. Y. (1981), Spatial Distribution of Earthquakes: The Three-point Moment Function, Geophys. J. R. Astr. Soc. 67, 697–717.

    Article  Google Scholar 

  • Kagan, Y. Y., and Knopoff, L. (1980), Spatial Distribution of Earthquakes: The Two-point Correlation Function, Geophys. J. R. Astr. Soc. 62, 697–717.

    Google Scholar 

  • Kanamori, H., and Anderson, D. L. (1975), Theoretical Basis of Some Empirical Relations in Seismology, Bull. Seismol. Soc. Am. 65, 1073–1095.

    Google Scholar 

  • King, G. (1983), The Accommodation of Large Strains in the Upper Lithosphere of the Earth and Other Solids by Self-similar Fault Systems: The Geometrical Origin ofb-values, Pure and Appl. Geophys. 121, 761–815.

    Article  Google Scholar 

  • Kinzel, W., Directed percolation. In Percolation Structures and Processes (ed. Weil, R.) (Adam Hilger, Bristol 1983) pp. 425–445.

    Google Scholar 

  • Leath, P. L. (1976), Cluster Size and Boundary Distribution near Percolation Threshold, Phys. Rev. B14, 5046–5055.

    Google Scholar 

  • Liggett, T. M., Interacting Particle Systems (Springer-Verlag, New York 1985).

    Book  Google Scholar 

  • Lomnitz-Adler, J., and Lemus-Diaz, P. (1989), A Stochastic Model for Fracture Growth on a Heterogeneous Seismic Fault, Geophys. J. Int. 99, 183–194.

    Article  Google Scholar 

  • Lorenz, E. N. (1963), Deterministic Nonperiodic Flow, J. Atmos. Sci. 20, 130–141.

    Article  Google Scholar 

  • Louis, E., and Guinea, F. (1989), Fracture as a Growth Process, Physica D38, 235–241.

    Google Scholar 

  • Mandelbrot, B. B. (1967), How Long is the Coast of Britain? Statistical Self-similarity and Fractional Dimension, Science 155, 636–638.

    Article  Google Scholar 

  • Mandelbrot, B. B., Fractals: Form, Chance and Dimension (Freeman, San Francisco 1977).

    Google Scholar 

  • Mandelbrot, B. B., The Fractal Geometry of Nature (Freeman, San Francisco 1982).

    Google Scholar 

  • Matsuzaki, M., and Takayasu, H. (1991), Fractal Features of Earthquake Phenomenon and a Simple Mechanical Model, J. Geophys. Res. 96, 19,925–19,931.

    Google Scholar 

  • May, R. M. (1976), Simple Mathematical Models with Very Complicated Dynamics, Nature 261, 459–467.

    Article  Google Scholar 

  • McCauley, J. L. (1990), Introduction to Multifractals in Dynamical Systems Theory and Fully Developed Fluid Turbulence, Phys. Reports 189, 225–226.

    Article  Google Scholar 

  • Meakin, P. (1991), Models for Material Failure and Deformation, Science 252, 226–234.

    Article  Google Scholar 

  • Meneveau, C., and Sreenivasan, K. R., The multifractal spectrum of the dissipation field in turbulent flows. In Physics of Chaos and Systems Far from Equilibrium (eds. Van, Minh-Duong, and Nicolis, B.) (North-Holland, Amsterdam 1987).

    Google Scholar 

  • Mori, Y., Kaneko, K., and Wadati, M. (1991), Fracture Dynamics by Quenching. I. Crack Patterns, J. Phys. Soc. Japan 60, 1591–1599.

    Article  Google Scholar 

  • Naftaly, U., Schwartz, M., Aharony, A., and Stauffer, D. (1991), The Granular Fracture Model for Rock Fragmentation, J. Phys. A24, L1175–L1184.

    Google Scholar 

  • Nakanishi, H. (1991), Statistical Properties of the Cellular-automaton Model for Earthquakes, Phys. Rev. A43, 6613–6621.

    Google Scholar 

  • Nicolis, G., and Prigogine, I., Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations (Wiley, New York 1977).

    Google Scholar 

  • Ogata, Y. (1988), Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes, J. Am. Stat. Assoc. 83(401), 9–27.

    Article  Google Scholar 

  • Ogata, Y. (1989), Statistical Model for Standard Seismicity and Detection of Anomalies by Residual Analysis, Tectonophys. 169, 159–174.

    Article  Google Scholar 

  • Omori, F. (1894), On Aftershocks of Earthquakes, J. Coll. Sci. Imp. Univ. Tokyo 7, 111–200.

    Google Scholar 

  • Otsuka, M. (1971), A Simulation of Earthquakes Occurrences, Part 1: A Mechanical Model, Jishin 24, 13–25 (in Japanese).

    Google Scholar 

  • Otsuka, M. (1972), A Chain-reaction-type Source Model as a Tool to Interpret the Magnitude-frequency Relation of Earthquakes, J. Phys. Earth 20, 35–45.

    Article  Google Scholar 

  • Pasad, R. R., Meneveau, C., and Sreenivasan, K. R. (1988), Multifractal Nature of the Dissipation Field of Passive Scalars in Fully Developed Turbulent Flows, Phys. Rev. Lett. 61, 14–77.

    Google Scholar 

  • Peebles, P. J. E., Large-scale Structure of the Universe (Princeton Univ. Press, Princeton 1980).

    Google Scholar 

  • Pfeuty, P., and Toulouse, G., Introduction to the Renormalization Group and Critical Phenomena (John Wiley and Sons, 1977).

    Google Scholar 

  • Pietronero, L., and Tosatti, E., eds., Fractals in Physics (North-Holland, Amsterdam 1986).

    Google Scholar 

  • Rikitake, T. (1958), Oscillations of a System of Disk Dynamos, Proc. Cambridge Philos. Soc. 54, 89–105.

    Article  Google Scholar 

  • Sadvskiy, M. A., Golubeva, T. V., Pisarenko, V. F., and Shnirman, M. G. (1984), Characteristic Dimensions of Rock and Hierarchical Properties of Seismicity, Izv. Acad. Sci. USSR, Earth Phys., Engl. Transi., 20, 87–96.

    Google Scholar 

  • Selinger, R. L. B., Wang, Z.-G., Gelbart, W. M., and Ben-Shaul, A. (1991), Statistical-thermodynamic Approach to Fracture, Phys. Rev. A43, 4396–4400.

    Google Scholar 

  • Skjertorp, A. T., and Meakin, P. (1988), Fracture in Microsphere Monolayers Studied by Experiment and Computer Simulation, Nature 335, 424–426.

    Article  Google Scholar 

  • Smalley, R. F., Turcotte, D. L., and Solla, S. A. (1985), A Renormalization Group Approach to the Stick-slip Behavior of Faults, J. Geophys. Res. 90, 1894–1900.

    Article  Google Scholar 

  • Sornette, A., Davy, Ph., and Sornette, D. (1990), Structuration of the Lithosphere in Plate Tectonics as a Self-organized Critical Phenomenon, J. Geophys. Res. 95, 17,353–17,361.

    Google Scholar 

  • Sornette, A., and Sornette, D. (1989), Self-organized Criticality and Earthquakes, Europhys. Lett. 9, 197–202.

    Article  Google Scholar 

  • Stanley, H. G., Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford 1971).

    Google Scholar 

  • Stanley, H. E., and Meakin, P. (1988), Multifractal Phenomena in Physics and Chemistry, Nature 335, 405–409.

    Article  Google Scholar 

  • Stauffer, D., Introduction to Percolation Theory (Taylor and Francis, London 1985).

    Book  Google Scholar 

  • Stuketee, J. A. (1958), Some Geophysical Applications of the Elasticity Theory of Dislocations, Can. J. Phys. 36, 1168–1198.

    Article  Google Scholar 

  • Takayasu, H., Pattern formation of dendritic fractals in fracture and electric breakdown. In Fractals in Physics (eds. Pietronero, L., and Tosatti, E.) (North-Holland, Amsterdam 1986) pp. 181–184.

    Google Scholar 

  • Takayasu, H., Nishikawa, I., and Tasaki, H. (1988), Power-law Distribution of Aggregation Systems with Injection, Phys. Rev. A37, 3110–3117.

    Google Scholar 

  • Termonia, Y., and Meakin, P. (1986), Formation of Fractal Cracks in Kinetic Fracture Model, Nature 320, 429–431.

    Article  Google Scholar 

  • Terada, T., Scientific Papers by Torahiko Terada, Vols. 1-6 (Iwanami Syoten, Tokyo 1931).

    Google Scholar 

  • Thom, R., Structural Stability and Morphogenesis (Benjamin, Reading, MA 1975).

    Google Scholar 

  • Thompson, D’arcy W., On Growth and Form (Cambridge Univ. Press, Cambridge 1917).

    Google Scholar 

  • Totsuji, H., and Kihara, T. (1969), The Correlation Function for the Distribution of Galaxies, Publ. Astron. Soc. Japan 21, 221–229.

    Google Scholar 

  • Turcotte, D. L. (1986), A Fractal Model for Crustal Deformation, Tectonophys. 132, 361–369.

    Article  Google Scholar 

  • Utsu, T. (1969), Aftershocks and Earthquake Statistics (I), J. Fac. Sci., Hokkaido Univ., ser. VII, 3, 129–195.

    Google Scholar 

  • Utsu, T. (1970), ibid (II), J. Fac. Sci., Hokkaido Univ., ser. VII, 3, 197–266.

    Google Scholar 

  • Wiesenfeld, K., Tang, G., and Bak, P. (1989), A Physicist’s Sandbox, J. Statist. Phys. 54, 1441–1458.

    Article  Google Scholar 

  • Yamashina, K. (1978), Induced Earthquakes in the Izu-Peninsula by the Izu-Hanto-Oki Earthquake of 1974, Japan, Tectonophys. 51, 139–154.

    Article  Google Scholar 

  • Zeeman, E. C., Catastrophe Theory (Addison-Wesley, Reading, MA 1977).

    Google Scholar 

  • Zhang, Yi-C. (1989). Scaling Theory of Self-organized Criticality, Phys. Rev. Lett., 63, 470–473.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Basel AG

About this chapter

Cite this chapter

Ito, K. (1992). Towards a New View of Earthquake Phenomena. In: Sammis, C.G., Saito, M., King, G.C.P. (eds) Fractals and Chaos in the Earth Sciences. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6191-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6191-5_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2878-8

  • Online ISBN: 978-3-0348-6191-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics