Skip to main content
  • 264 Accesses

Zusammenfassung

Es sind nicht alle Zahlen gleich vor dem Herrn. Die reellen Zahlen entsprechen zwar Punkten auf der Zahlengeraden und ähneln in diesem Sinne einander, aber es gibt dennoch gewaltige Unterschiede zwischen ihnen. Einige von ihnen wurden von den Frühmenschen geschaffen (1,2,3), andere von den kultivierten Griechen (√2, π) und wieder andere von den Entdeckern der Differential- und Integralrechnung (e). Über die elementare Unterscheidung zwischen ganzen und nichtganzen Zahlen hinaus gibt es die Einteilungen in rationale und irrationale Zahlen oder in algebraische und transzendente Zahlen. Moderneren Ursprungs sind andere Eigenschaften gewisser — aber nicht aller — reeller Zahlen wie z.B. Normalität und Berechenbarkeit in Echtzeit. In diesem Kapitel stellen wir einige ungelöste Probleme zu Eigenschaften einiger berühmter Zahlen vor und werden unterwegs einigen interessanten, aber weniger bekannten Zahlen begegnen, wie zum Beispiel der Champernowneschen Zahl (0,12345678910111213...) und der Liouvilleschen Zahl (0,1100010000000000000001000...).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturhinweise

  1. G. Almkvist and B. Berndt, Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π, and the Ladies Diary, American Mathematical Monthly, 95 (1988) 585–608. [§21]

    Article  MathSciNet  MATH  Google Scholar 

  2. A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974. [§23]

    MATH  Google Scholar 

  3. T.M. Apostol, Another elementary proof of Euler’s formula for ζ(2n), American Mathematical Monthly, 80 (1973) 425–431. [§24]

    Article  MathSciNet  MATH  Google Scholar 

  4. T.M. Apostol, A proof that Euler missed: Evaluating ζ(2) the easy way, The Mathematical Intelligencer, 5 (1983) 59–60. [§24]

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Ayoub, Euler and the zeta function, American Mathematical Monthly, 81 (1974) 1067–86. [§24]

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Bailey, Numerical results on the transcendence of constants involving π, e, and Euler’s constant, Mathematics of Computation, 50, (1988) 275–281. [§22]

    MathSciNet  MATH  Google Scholar 

  7. D. Bailey, The computation of ir to 29,360,000 decimal digits using Borweins’ quartically convergent algorithm, Mathematics of Computation, 50 (1988) 283–296. [§21]

    MathSciNet  MATH  Google Scholar 

  8. A. Baker, Transcendental Number Theory, Cambridge University Press, London, 1975. [§22]

    Book  MATH  Google Scholar 

  9. P. Beckmann, A History of π, fifth ed., Golem Press, Boulder, 1982. [§21]

    Google Scholar 

  10. B. Berndt, Elementary evaluation of ζ(2n), Mathematics Magazine, 48 (1975) 148–154. [§24]

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Berndt, Modular transformations and generalizations of several formulas of Ramanujan, Rocky Mountain Journal of Mathematics, 1 (1977) 147–189. [§24]

    Article  MathSciNet  Google Scholar 

  12. F. Beukers, A note on the irrationality of ζ(2) and ζ(3), Bulletin of the London Mathematical Society, 11 (1979) 268–272. [§24]

    Article  MathSciNet  MATH  Google Scholar 

  13. J.M. Borwein and P.B. Borwein, On the complexity of familiar functions and numbers, SIAM Review, 30 (1988) 589–601. [§21]

    Article  MathSciNet  MATH  Google Scholar 

  14. J.M. Borwein and P.B. Borwein, Pi and the AGM, Wiley, New York, 1987. [§§23 and 24]

    MATH  Google Scholar 

  15. F. Burk, Euler’s constant, The College Mathematics Journal, 16 (1985) 279. [§24]

    Article  Google Scholar 

  16. J.W.S. Cassels, On a problem of Steinhaus about normal numbers, Colloquium Mathematicae, 7 (1959) 95–101. [§21]

    MathSciNet  MATH  Google Scholar 

  17. D. Champernowne, The construction of decimals normal in the scale of ten, Journal of the London Mathematical Society, 8 (1933) 254–260. [§21]

    Article  MathSciNet  Google Scholar 

  18. A. Cobham, Uniform tag sequences, Mathematical Systems Theory, 6 (1972) 164–192. [§23]

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Copeland and P. Erdös, Note on normal numbers, Bulletin of the American Mathematical Society, 52 (1946) 857–860. [§21]

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Dekking, M. Mendes-France, and A. van der Poorten, Folds!, The Mathematical Intelligencer, 4 (1983) 130–138, 173–181, 190–195. [§23]

    Google Scholar 

  21. M. Gardner, Slicing π into millions, Discover, 6 January, 1985, 50–52. [§21]

    Google Scholar 

  22. J. Hancl, A simple proof of the irrationality of π 4, American Mathematical Monthly, 93 (1986) 374–75. [§21]

    Article  MathSciNet  MATH  Google Scholar 

  23. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, fourth ed., Oxford, London, 1960. [§§21 and 22]

    MATH  Google Scholar 

  24. J. Hartmanis and R. Stearns, On the computational complexity of algorithms, Transactions of the American Mathematical Society, 117 (1965) 285–306. [§23]

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, New York, 1982. [§24]

    Book  MATH  Google Scholar 

  26. Y. Kanada, Y. Tamura, S. Yoshino, and Y. Ushiro, Calculation of π to 10,013,395 decimal places based on the Gauss-Legendre algorithm and Gauss arctangent relations, Computer Centre, University of Tokyo, 1983. [§21]

    Google Scholar 

  27. R. Kannan, A.K. Lenstra, and L. Loväsz, Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers, Mathematics of Computation, 50 (1988) 235–250. [§23]

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Kannan and L.A. McGeoch, Basis reduction and evidence for transcendence of certain numbers, in Sixth Conference on Foundations of Software Technology and Theoretical Computer Science Conference, Lecture Notes in Computer Science, No. 241, Springer, Berlin 1986 263–269. [§22]

    Chapter  Google Scholar 

  29. K. Knopp, Theorie und Anwendung der unendlichen Reihen, 6. Aufl., Springer, Berlin, 1996. [§24]

    Book  MATH  Google Scholar 

  30. D.E. Knuth, The Art of Computer Programming, vol. 1, Addison-Wesley, Read- ing, Mass., 1968. [§24]

    MATH  Google Scholar 

  31. D.E. Knuth, The Art of Computer Programming, vol. 2, Addison-Wesley, Reading, Mass., 1971. [§§23 and 24]

    Google Scholar 

  32. N. Koblitz, P-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd ed., Springer, New York, 1984. [§24]

    Book  Google Scholar 

  33. D.H. Lehmer, Interesting series involving the central binomial coefficient, American Mathematical Monthly, 92 (1985) 449–457. [§24]

    Article  MathSciNet  MATH  Google Scholar 

  34. J.H. Loxton and A.J. van der Poorten, Arithmetic properties of the solutions of a class of functional equations, Journal für die Reine und Angewandte Mathematik, 330 (1982) 159–172. [§23]

    MATH  Google Scholar 

  35. J.H. Loxton and A.J. van der Poorten, Arithmetic properties of automata: regulär sequences, Journal für die Reine und Angewandte Mathematik, 392 (1988) 57–69. [§23]

    MATH  Google Scholar 

  36. K. Mahler, Arithmetical properties of the digits of the multiples of an irrational number, Bulletin of the Australian Mathematical Society, 8 (1973) 191–203. [§21]

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Mahler, Fifty years as a mathematician, Journal of Number Theory, 14 (1982) 121–155. [§23]

    Article  MathSciNet  MATH  Google Scholar 

  38. Z.A. Melzak, Companion to Concrete Mathematics, Wiley, New York, 1973. [§24]

    MATH  Google Scholar 

  39. M. Mendes-France and A.J. van der Poorten, Arithmetic and analytic properties of paperfolding sequences, Bulletin of the Australian Mathematical Society, 24 (1981) 123–131. [§23]

    Article  MathSciNet  MATH  Google Scholar 

  40. I. Niven, A simple proof that π is irrational, Bulletin of the American Mathematical Society, 53 (1947) 509. [§21]

    Article  MathSciNet  MATH  Google Scholar 

  41. I. Niven, Numbers: Rational and Irrational, New Mathematical Library, vol. 1, Random House, New York, 1961. [§23]

    Google Scholar 

  42. I. Niven, Irrational Numbers, Carus Mathematical Monographs, No. 11, The Mathematical Association of America. Wiley, New York, 1967. [§§21, 22, and 23]

    Google Scholar 

  43. I. Papadimitriou, A simple proof of the formula Σk=1 k −2 = π 2/6, American Mathematical Monthly, 80 (1973) 424–425. [§24]

    Article  MathSciNet  MATH  Google Scholar 

  44. C. Reid, Hilbert, Springer, New York, 1970. [§22]

    Book  MATH  Google Scholar 

  45. P. Ribenboim, Consecutive powers, Expositiones Mathematicae, 2 (1984) 193–221. [§21]

    MathSciNet  MATH  Google Scholar 

  46. H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhäuser, Boston, 1985. [§21]

    Book  MATH  Google Scholar 

  47. M.L. Robinson, On certain transcendental numbers, Michigan Mathematical Journal 31 (1984) 95–98. [§22]

    Article  MathSciNet  MATH  Google Scholar 

  48. E. Salamin, Computation of π using arithmetic-geometric mean, Mathematics of Computation, 30 (1976) 565–570. [§21]

    MathSciNet  MATH  Google Scholar 

  49. W. Schmidt, On normal numbers, Pacific Journal of Mathematics, 10 (1960) 661–672. [§21]

    Article  MathSciNet  MATH  Google Scholar 

  50. C.L. Siegel, Transcendental Numbers, Annais of Mathematics Studies, No. 16, Princeton University Press, Princeton, 1949. [§22]

    Google Scholar 

  51. S.B. Smith, The Great Mental Calculators, Columbia University Press, New York, 1983. [§21]

    MATH  Google Scholar 

  52. E.L. Stark, The series Σk=1 k −s s = 2,3,4,…, once more, Mathematics Magazine, 47 (1974) 197–202. [§24]

    Article  MATH  Google Scholar 

  53. R.G. Stoneham, On the uniform e-distribution of residues within the periods of rational fractions with applications to normal numbers, Acta Arithmetica, 22 (1973) 371–389. [§21]

    MathSciNet  MATH  Google Scholar 

  54. E. Thorp and R. Whitley, Poincare’s conjecture and the distribution of digits in tables, Compositio Mathematica, 23 (1971) 233–250. [§21]

    MathSciNet  MATH  Google Scholar 

  55. R. Tijdeman, Hilbert’s seventh problem: on the Gelfond-Baker method and its applications, in Mathematical Developments Arising From Hilbert Problems, Proceedings of Symposia in Pure Mathematics, 28, Part 1, American Mathematical Society, Providence, 1976. [§22]

    Google Scholar 

  56. E.C. Titchmarsh, The Theory of Functions, 2. Auflage, Oxford University Press, London, 1939. [§24]

    MATH  Google Scholar 

  57. A. van der Poorten, A proof that Euler missed, The Mathematical Intelligencer, 1 (1979) 195–203. [§24]

    Article  MATH  Google Scholar 

  58. S. Wagon, The evidence: Is π normal?, The Mathematical Intelligencer, 1:3 (1985) 65–67. [§21]

    MathSciNet  Google Scholar 

  59. A. Weil, Number Theory, An approach through history from Hammurapi to Legendre, Birkhäuser, Boston, 1984. [§24]

    MATH  Google Scholar 

  60. A.M. Yaglom and I.M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Vol. II, Holden-Day, San Francisco, 1967. [§24]

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this chapter

Cite this chapter

Klee, V., Wagon, S. (1997). Interessante reelle Zahlen. In: Alte und neue ungelöste Probleme in der Zahlentheorie und Geometrie der Ebene. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6073-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6073-4_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-5308-7

  • Online ISBN: 978-3-0348-6073-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics