Skip to main content

A Theory of Enhanced Saturation of the Gravity Wave Spectrum Due to Increases in Atmospheric Stability

  • Chapter
Book cover Middle Atmosphere

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 92 Accesses

Abstract

In this paper we consider a vertical wavenumber spectrum of vertically propagating gravity waves impinging on a rapid increase in atmospheric stability. If the high-wavenumber range is saturated below the increase, as is usually observed, then the compression of vertical scales as the waves enter a region of higher stability results in that range becoming supersaturated, that is, the spectral amplitude becomes larger than the saturation limit. The supersaturated wave energy must then dissipate in a vertical distance of the order of a wavelength, resulting in an enhanced turbulent energy dissipation rate. If the wave spectrum is azimuthally anisotropic, the dissipation also results in an enhanced vertical divergence of the vertical flux of horizontal momentum and enhanced wave drag in the same region. Estimates of the enhanced dissipation rates and radar reflectivities appear to be consistent with the enhancements observed near the high-latitude summer mesopause. Estimates of the enhanced mean flow acceleration appear to be consistent with the wave drag that is needed near the tropopause and the high-latitude summer mesopause in large-scale models of the atmosphere. Thus, this process may play a significant role in determining the global effects of gravity waves on the large-scale circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, D. G., and M. E. McIntyre (1976), Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration, J. Atmos. Sci. 33, 2031–1048.

    Article  Google Scholar 

  • Balsley, B. B., and D. A. Carter (1982), The spectrum of atmospheric velocity fluctuations at 8 and 86km, Geophys. Res. Lett. 9, 465–468.

    Article  Google Scholar 

  • Balsley, B. B., W. L. Ecklund, and D. C. Fritts (1983), VHF echoes from the high-latitude mesosphere and lower thermosphere: Observations and interpretations, J. Atmos. Sci 40, 2451–2466.

    Article  Google Scholar 

  • Balsley, B. B., W. L. Ecklund, and D. C. Fritts, VHF echoes from the arctic mesosphere and lower thermosphere, Part I: Observations, in Dynamics of the Middle Atmosphere (ed. J. R. Holton and T. Matsuno) (Terra Scientific Pub. Co. 1984) pp. 77–96.

    Chapter  Google Scholar 

  • Balsley, B. B., and R. Garello (1985), The kinetic energy density in the troposphere, stratosphere, and mesosphere: A preliminary study using the Poker Flat MST radar in Alaska, Radio Sci. 20, 1355–1361.

    Article  Google Scholar 

  • Booker, J. R., and F. P. Bretherton (1967), The critical layer for internal gravity waves in a shear flow, J. Fluid Mech. 27, 513–539.

    Article  Google Scholar 

  • Boyd, J. P. (1976), The noninteraction of waves with the zonally-averaged flow on a spherical earth and the inter-relationships of eddy fluxes of energy, heat and momentum, J. Atmos. Sci 33, 2285–2291.

    Article  Google Scholar 

  • Bretherton, F. P., and C. J. R. Garrett (1969), Wavetrains in inhomogeneous moving media, Proc. Roy. Soc. London A302, 529–554.

    Google Scholar 

  • Broutman, D. (1982), The interaction of short-wavelength internal waves with a background current, Ph.D. Thesis, Scripps Inst. of Ocean, Univ. of California, San Diego.

    Google Scholar 

  • Chao, W. C., and M. R. Schoeberl (1984), A note on the linear approximation of gravity wave saturation in the mesosphere, J. Atmos. Sci 41, 1893–1898.

    Article  Google Scholar 

  • Czechowsky, P., and R. Rüster (1985), Power spectra of mesospheric velocities in polar regions, Handbook for MAP 18, 207–211.

    Google Scholar 

  • Desaubies, Y. J. F. (1976), Analytical representation of internal wave spectra, J. Phys. Oceanogr. 6, 976–981.

    Article  Google Scholar 

  • Dewan, E. M. (1979), Stratospheric wave spectra resembling turbulence, Science 204, 832–835.

    Article  Google Scholar 

  • Dewan, E. M., and R. E. Good (1986), Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere, J. Geophys. Res. 91, 2742–2748.

    Article  Google Scholar 

  • Dewan, E. M., N. Grossbard, A. F. Quesada, and R. E. Good (1984), Spectral analysis of 10m resolution scalar velocity profiles in the stratosphere, Geophys. Res. Lett. 11, 80–83, and Correction to “Spectral analysis of...”, Geophys. Res. Lett. 11, 624.

    Article  Google Scholar 

  • Dunkerton, T. J. (1982), Stochastic parameterization of gravity wave stresses, J. Atmos. Sci. 29, 1711–1725.

    Article  Google Scholar 

  • Ecklund, W. L., and B. B. Balsley (1981), Long-term observations of the arctic mesosphere with the MST radar at Poker Flat Alaska, J. Geophys. Res. 86, 7775–7780.

    Article  Google Scholar 

  • Fritts, D. C. (1984), Gravity wave saturation in the middle atmosphere: A review of theory and observations, Rev. Geophys. Space Phys. 22, 275–308.

    Article  Google Scholar 

  • Fritts, D. C., and H.-G. Chou (1987), An investigation of the vertical wavenumber and frequency spectra of gravity wave motions in the lower stratosphere, J. Atmos. Sci. 44, 3610–3624.

    Article  Google Scholar 

  • Fritts, D. C., and T. J. Dunkerton (1985), Fluxes of heat and constituents due to convectively unstable gravity waves, J. Atmos. Sci. 42, 549–556.

    Article  Google Scholar 

  • Fritts, D. C., and P. K. Rastogi (1985), Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations, Radio Sci. 20, 1247–1277.

    Article  Google Scholar 

  • Fritts, D. C., T. Tsuda, T. Sato, S. Fukao, and S. Kato (1988), Observational evidence of a saturated gravity wave spectrum in the troposphere and lower stratosphere, J. Atmos. Sci. 45, 1741–1759.

    Article  Google Scholar 

  • Fritts, D. C., and R. A. Vincent (1987), Mesospheric momentum flux studies at Adelaide, Australia: Observations and a gravity wave/tidal interaction model, J. Atmos. Sci. 44, 605–619.

    Article  Google Scholar 

  • Fukao, S., T. Sato, T. Tsuda, S. Kato, M. Inaba, and I. Kimura (1988), VHF Doppler radar determination of the momentum flux in the upper troposphere and lower stratosphere: Comparison between the three- and four-beam methods, J. Atmos. Oceanic Tech. 5, 57–69.

    Article  Google Scholar 

  • Garcia, R. R., and S. Solomon (1985), The effect of breaking gravity waves on the dynamical and chemical composition of the mesosphere and lower thermosphere, J. Geophys. Res. 90, 3850–3868.

    Article  Google Scholar 

  • Garrett, C. J. R., and W. H. Munk (1972), Space-time scales of internal waves, Geophys. Astrophys. Fluid Dyn. 3, 225–235.

    Article  Google Scholar 

  • Garrett, C. J. R., and W. H. Munk (1975), Space-time scales of internal waves: A progress report, J. Geophys. Res. 80, 291–297.

    Article  Google Scholar 

  • Hill, R. J., and S. F. Clifford (1978), Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation, J. Opt. Soc. Am. 68, 892–899.

    Article  Google Scholar 

  • Hocking, W. K. (1985), Turbulence in the region 80–120km, MAP Handbook 16, 290–304.

    Google Scholar 

  • Holton, J. R. (1982), The role of gravity wave-induced drag and diffusion in the momentum budget of the mesosphere, J. Atmos. Sci. 39, 791–799.

    Article  Google Scholar 

  • Holton, J. R. (1983), The influence of gravity wave breaking on the general circulation of the middle atmosphere, J. Atmos. Sci. 40, 2497–2507.

    Article  Google Scholar 

  • Lindzen, R. S. (1981), Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res. 86, 9707–9714.

    Article  Google Scholar 

  • Maekawa, Y., S. Fukao, I. Hirota, M. P. Sulzer, and S. Kato (1987), Some further results on long-term mesospheric and lower thermospheric wind observation by the Arecibo radar, J. Atmos. Terrest. Phys. 49, 63–71.

    Article  Google Scholar 

  • McComas, C. H., and P. Müller (1981), The dynamic balance of internal waves, J. Phys. Ocean. 11, 970–986.

    Article  Google Scholar 

  • McFarlane, N. A. (1987), The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere, J. Atmos. Sci. 44, 1775–1800.

    Article  Google Scholar 

  • Miyahara, S., Y. Hayashi, and J. D. Mahlman (1986), Interactions between gravity waves and the planetary scale flow simulated by the GFDL “SKYHI” general circulation model, J. Atmos. Sci. 43, 1844–1861.

    Article  Google Scholar 

  • Nurmi, P. (1983), An analysis of the budgets of zonal momentum and kinetic energy in the Northern Hemisphere during the first special observing period of the FGGE, Rep. No. 24, Dept. of Meteorology, University of Helsinki.

    Google Scholar 

  • Ottersten, H. (1969), Atmospheric structure and radar backscattering in clear air, Radio Sci. 12, 1179–1193.

    Article  Google Scholar 

  • Palmer, T. N., G. J. Shutts, and R. Swinbank (1986), Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization, Quart. J. Roy. Met. Soc. 112, 1001–1040.

    Article  Google Scholar 

  • Reid, I. M., and R. A. Vincent (1987), Measurements of mesospheric gravity wave momentum fluxes and mean flow accelerations at Adelaide, Australia, J. Atmos. Terrest. Phys. 49, 443–460.

    Article  Google Scholar 

  • Scheffler, A. O., and C. H. Liu (1985), On observation of gravity wave spectra in the atmosphere using MST radars, Radio Sci. 20, 1309–1322.

    Article  Google Scholar 

  • Schoeberl, M. R., D. F. Strobel, and J. P. Apruzese (1983), A numerical model of gravity wave breaking and stress in the middle atmosphere, J. Geophys. Res. 88, 5249–5259.

    Article  Google Scholar 

  • Smith, S. A., D. C. Fritts, and T. E. VanZandt (1987), Evidence for a saturated spectrum of atmospheric gravity waves, J. Atmos. Sci. 44, 1404–1410.

    Article  Google Scholar 

  • Strubel, D. F., J. P. Apruzese, and M. R. Schoeberl (1985), Energy balance constraints on gravity wave induced eddy diffusion in the mesosphere and lower thermosphere, J. Geophys. Res. 90, 13,067–13,072.

    Google Scholar 

  • Tanaka, H. (1986), A slowly varying model of the lower stratospheric zonal wind minimum induced by mesoscale mountain wave breakdown, J. Atmos. Sci. 43, 1881–1892.

    Article  Google Scholar 

  • Theon, J. S., W. Nordberg, L. B. Katchen, and J. J. Horvath (1967), Some observations on the thermal behavior of the mesosphere, J. Atmos. Sci. 24, 428–438.

    Article  Google Scholar 

  • Thomas, R. J., C. A. Barth, and S. Solomon (1984), Seasonal variations of ozone in the upper mesosphere and gravity waves, Geophys. Res. Lett. 7, 673–676.

    Article  Google Scholar 

  • Trout, D., and H. A. Panofsky (1969), Energy dissipation near the tropopause, Tellus 21, 355–358.

    Article  Google Scholar 

  • Ulwick, J. C., K. D. Baker, M. C. Kelley, B. B. Balsley, and W. L. Ecklund (1988), Comparison of simultaneous MST radar and electron density probe measurements during STATE, J. Geophys. Res. 93, 6989–7000.

    Article  Google Scholar 

  • VanZandt, T. E. (1982), A universal spectrum of buoyancy waves in the atmosphere, Geophys. Res. Lett. 9, 575–578.

    Article  Google Scholar 

  • VanZandt, T. E. (1985), A model for gravity wave spectra observed by Doppler sounding systems, Radio Sci. 20, 1323–1330.

    Article  Google Scholar 

  • Vincent, R. A. (1984), Gravity wave motions in the thermosphere, J. Atmos. Terrest. Phys. 46, 119–128.

    Article  Google Scholar 

  • Vincent, R. A., and I. M. Reid (1983), HE Doppler measurements of mesospheric momentum fluxes, J. Atmos. Sci. 40, 1321–1333.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Basel AG

About this chapter

Cite this chapter

VanZandt, T.E., Fritts, D.C. (1989). A Theory of Enhanced Saturation of the Gravity Wave Spectrum Due to Increases in Atmospheric Stability. In: Plumb, R.A., Vincent, R.A. (eds) Middle Atmosphere. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5825-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5825-0_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2290-8

  • Online ISBN: 978-3-0348-5825-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics