Membrane Currents in Rhythmic Neurons

  • Jorge Golowasch
  • Wanita Kumar
  • Eve Marder
Part of the Advances in Life Sciences book series (ALS)

Summary

The peptide proctolin can initiate strong pyloric and gastric rhythms from the stomatogastric ganglion (STG) of lobsters and crabs. To account for the effects of proctolin on the neural networks that produce the pyloric rhythms, we have attempted to determine the specific neural targets for proctolin, and to describe the membrane currents influenced by it. To this end, we have placed individual STG neurons in dissociated cell culture. We find that many of these neurons oscillate subsequent to hyperpolarizing pulses, and that proctolin increases the oscillatory activity of these neurons.

References

  1. Bal, T., Nagy, F. & Moulins, M. (1988) The pyloric central pattern generator in Crustacea: a set of conditional neuronal oscillators. J, Comp. Physiol. A. 163: 715–727.CrossRefGoogle Scholar
  2. Difrancesco, D., Ferroni, A., Mazzanti, & Tromba, C. (1986) Properties of the hyperpolarizing-activated current (if) in cells isolated from the rabbit sinoatrial node. J. Physiol. 377: 61–88.Google Scholar
  3. Flamm, R.E. & Harris-Warrick, R.M. (1986) Aminergic modulation in lobster stomatogastric ganglion. II. Target neurons of dopamine, octopamine, and serotonin within the pyloric circuit. J. Neurophysiol. 55: 866–881.Google Scholar
  4. Harris-Warrick, R.M. & Flamm, R.E. (1987) Multiple mechanisms of bursting in a conditional bursting neuron. J. Neurosci. 7: 2113–2128.Google Scholar
  5. Heinzel, H.-G. & Seiverston, A.I. (1988) Gastric mill activity in the lobster. III. Effects of proctolin on the isolated central pattern generator. J. Neurophysiol. 59: 515–522.Google Scholar
  6. Hooper, S.L. & Marder, E. (1984) Modulation of a central pattern generator by two neuropeptides, proctolin and FMRFamide. Brain Res. 305:186–191.CrossRefGoogle Scholar
  7. Hooper, S.L. & Marder, E. (1987) Modulation of the lobster pyloric rhythm by the peptide proctolin. J. Neurosci. 7: 2097–2112.Google Scholar
  8. Kepler, T.B., Abbott, L.F. & Marder, E. (1989) The role of electrical coupling on the emergent frequency of a neuronal oscillator. In preparation.Google Scholar
  9. Krenz, W.D. & Fischer, P. (1988) Ionic conductances in crustacean stomatogastric neurons in primary culture. Soc. Neurosci. Abst. 14: 295.Google Scholar
  10. Marder, E. & Eisen, J.S. (1984) Transmitter identification of pyloric neurons: electrically coupled neurons use different transmitters. J. Neurophysiol. 51: 1345–1361.Google Scholar
  11. Marder, E., Hooper, S.L. & Siwicki, K.K. (1986) Modulatory action and distribution of the neuropeptide proctolin in the crustacean stomatogastric nervous system. J. Comp. Neurol. 243: 454–467.CrossRefGoogle Scholar
  12. Moulins, M & Cournil, I. (1982) All-or-none control of the bursting properties of the pacemaker neurons of the lobster pyloric pattern generator. J. Neurobiol. 13: 447–458.CrossRefGoogle Scholar
  13. Nusbaum, M.P. & Marder, E. (1989a) A modulatory proctolin-containing neuron (MPN). I. Identification and characterization. J. Neurosci. 9:1591–1599,Google Scholar
  14. Nusbaum, M.P. & Marder, E. (1989b) A modulatory proctolin-containing neuron (MPN). II. State-dependent modulation of rhythmic motor activity. J. Neurosci. 9: 1600–1607.Google Scholar

Copyright information

© Springer Basel AG 1990

Authors and Affiliations

  • Jorge Golowasch
    • 1
  • Wanita Kumar
    • 1
  • Eve Marder
    • 1
  1. 1.Biology DepartmentBrandeis UniversityWalthamUSA

Personalised recommendations