Skip to main content

The Obstacle Problem and Best Superharmonic Approximation

  • Chapter

Abstract

Let Ω be a subset of ℝn, and let S be the set of bounded superharmonic functions on Ω. If f is denned and bounded in Ω outside a polar set, then there is a best approximation g0 to f from S that differs from the least superharmonic majorant of f by a constant. Least superharmonic majorants are fundamental in Potential Theory, where they are called réduites, and they occur in the the theory of elliptic PDEs as solutions of variational inequalities related to the obstacle problem. By applying results from these two areas one may give sufficient conditions on f and Ω which guarantee that g0 has certain continuity or smoothness properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. R., Capacity and the obstacle problem. Appl. Math. Optim. 8 (1981), 39–57.

    Article  Google Scholar 

  2. Baiocchi, C. and A. Capelo, Variational and Quasi variational Inequalities, John Wiley & Sons, New York, 1984.

    Google Scholar 

  3. Cornea, A., Continuity of reduites and balayaged functions, in Colloque de Théorie du Potential-Jacques Deny, G. Mokobodzki and D. Pinchon (Eds.), Lecture Notes in Math., vol. 1096, Springer-Verlag, Berlin-Heidelberg-New York, 1984, 173–182.

    Chapter  Google Scholar 

  4. Cottle, R. W., F. Giannessi, and J.-L. Lions, Variational inequalities and Complementarity Problems, John Wiley & Sons, New York, 1980.

    Google Scholar 

  5. Doob, J. L., Classical Potential Theory and its Probabilistic Counterpart, Springer-Verlag, Berlin-Heidelberg-New York, 1984.

    Book  Google Scholar 

  6. Frehse, J., Capacity methods in the theory of partial differential equations, Jahres-ber. Deutsch. Math.-Verein. 84 (1982), 1–44.

    Google Scholar 

  7. Friedman, A., Variation ai Principles and Free-Boundary Problems, John Wiley & Sons, New York, 1982.

    Google Scholar 

  8. Fusciardi, A., U. Mosco, F. Scarpini, and A. Schiaffino, A dual method for the numerical solution of some variational inequalities, J. Math. Anal. Appl. 40 (1972), 471–493.

    Article  Google Scholar 

  9. Gilbarg, D. and N. S. Trudinger, Elliptic Partial Differential Equations oí Second Order, Springer-Verlag, Berlin-Heidelberg-New York, 1977.

    Book  Google Scholar 

  10. Glowinski, R., Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984.

    Book  Google Scholar 

  11. Hayman, W. K. and P. B. Kennedy, Subharmonic Functions, Academic Press, New York, 1976.

    Google Scholar 

  12. Hayman, W. K., D. Kershaw, and T. J. Lyons, The best harmonic approximant to a continuous function, in Anniversary Volume on Approximation Theory and Functional Analysis, P. L. Butzer, R. L. Stens, B. Sz.-Nagy (Eds.), ISNM vol. 65, Birkhäuser-Verlag, Basel-Boston, 1984, 317–327.

    Google Scholar 

  13. Heinonen, J. and T. Kilpeläinen, On the Wiener criterion and quasilinear obstacle problems, Trans. Amer. Math. Soc. 310 (1988), 239–255.

    Article  Google Scholar 

  14. Helms, L.L., Introduction to Potential Theory, John Wiley & Sons, New York, 1969.

    Google Scholar 

  15. Hormander, L., The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin-Heidelberg-New York, 1983.

    Book  Google Scholar 

  16. Kilpeläinen, T, Potential theory for supersolutions of degenerate elliptic equations,. Indiana Univ. Math. J. 38 (1989), 253–275.

    Article  Google Scholar 

  17. Kinderlehrer, D. and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic Press, New York, 1980.

    Google Scholar 

  18. Mosco, U., Wiener criterion and potential estimates for the obstacle problem, Indiana Univ. Math. J. 36 (1987), 455–494.

    Article  Google Scholar 

  19. Mosco, U. and F. Scarpini, Complementarity systems and approximation of variational inequalities, RATRO Model. Math. Anal. Numér. R-1 (1975), 83–104.

    Google Scholar 

  20. Singer, I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

    Google Scholar 

  21. Strehlau, G., L-error estimate for the numerical treatment of the obstacle problem by the penalty method, Numer. Funct. Anal. Optim. 10 (1989), 185–198.

    Article  Google Scholar 

  22. Troianiello, G. M., Elliptic Differential Equations and Obstacle Problems, Plenum, New York, 1987.

    Book  Google Scholar 

  23. Ubhaya, V., Uniform approximation by quasi-convex and convex functions, J. Ap-prox. Theory 55 (1988), 326–336.

    Article  Google Scholar 

  24. Wilson, J. M. and D. Zwick, Best approximation by subharmonic functions, preprint.

    Google Scholar 

  25. Zwick, D., Best approximation by convex functions, Amer. Math. Monthly 94 (1987), 528–534.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Basel AG

About this chapter

Cite this chapter

Zwick, D. (1990). The Obstacle Problem and Best Superharmonic Approximation. In: Haußmann, W., Jetter, K. (eds) Multivariate Approximation and Interpolation. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, vol 94. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5685-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5685-0_24

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5686-7

  • Online ISBN: 978-3-0348-5685-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics