Skip to main content

Interaction between fold and Hopf curves leads to new bifurcation phenomena

  • Chapter
Continuation Techniques and Bifurcation Problems

Abstract

This paper presents a numerical investigation of the complex phenomena which can occur at an interaction between fold and Hopf curves. In a two-parameter problem, qualitative information about steady state and periodic solutions can be obtained by computing the bifurcation set, consisting of fold curves and curves of Hopf points. This paper studies the evolution of the bifurcation set with respect to a third parameter for two mathematical models, the Brusselator trimolecular reaction scheme and a tubular reactor model. We find that a limit point of a branch of B-points coincides with a cusp point of a fold curve. At such a limit point branches of Hopf curves can disappear or can be detached from the fold curve. Bifurcation of two fold curves at a cusp point and bifurcation of Hopf curves has been detected too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, New York, 1983).

    Book  Google Scholar 

  2. B. De Dier, F. Walraven, R. Janssen, P. Van Rompay and V. Hlavacek, Bifurcation and stability analysis of a one-dimensional diffusion-autocatalytic reaction system, Z. Naturforsch. 42a (1987) 992–1002.

    Google Scholar 

  3. B. De Dier and D. Roose, Determination of bifurcation points and catastrophes for the Brusselator model with two parameters, in: T. Küpper, R. Seydel and H. Troger, Eds., Bifurcation: Analysis, Algorithms, Applications, Internat. Ser. Numer. Math. 79 (Birkhäuser, Basel, 1987).

    Google Scholar 

  4. B. De Dier and D. Roose, Numerical determination of a branch of codimension two bifurcation points in a three-parameter problem, Report TW99, Dept. Computer Science, K.U. Leuven, 1987.

    Google Scholar 

  5. B. Fiedler, Global Hopf bifurcation of two-parameter flows, Arch. Rat. Mech. Anal. 94 (1986) 59–81.

    Article  Google Scholar 

  6. J. Guckenheimer and Ph. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Applied Mathematical Sciences 42 (Springer, New York, 1983).

    Google Scholar 

  7. J. Guckenheimer, Multiple bifurcation problems for chemical reactors, Physica 20D (1986) 1–20.

    Google Scholar 

  8. R.F. Heinemann and A.B. Poore, Multiplicity, stability and oscillatory dynamics of the tubular reactor, Chem. Engng. Sci. 36 (1981) 1411–1419.

    Article  Google Scholar 

  9. V. Hlavacek and H. Hofmann, Modeling of chemical reactors XVI&XVII. Steady state axial heat and mass transfer in tubular reactors. An analysis of the uniqueness of solutions. Numerical investigation of multiplicity, Chem. Engng. Sci. 25 (1970) 173–199.

    Article  Google Scholar 

  10. G. Iooss and D.D. Joseph, Elementary Stability and Bifurcation Theory (Springer, New York, 1980).

    Book  Google Scholar 

  11. R. Janssen, V. Hlavacek and P. Van Rompay, Bifurcation patterns in reaction-diffusion systems, Z. Naturforsch. 38a (1983) 487.

    Google Scholar 

  12. A.D. Jepson and H.B. Keller, Steady state and periodic solution paths: their bifurcations and computations, in: T. Küpper, H.D. Mittelmann and H. Weber, Eds., Numerical Methods for Bifurcation Problems, Internat. Ser. Numer. Math. 70 (Birkhäuser, Basel, 1984) 219–246.

    Google Scholar 

  13. A.D. Jepson, A. Spence and K.A. Cliffe, Hopf along a fold, Harwell Report TP 1264, 1988; also, IMA J. Numer. Anal., submitted.

    Google Scholar 

  14. H.B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems, in: P.H. Rabinowitz, Ed., Applications of Bifurcation Theory (Academic Press, New York, 1977) 259–284.

    Google Scholar 

  15. M. Kubicek and M. Holodniok, Evaluation of Hopf bifurcation points in parabolic equations describing heat and mass transfer in chemical reactors, Chem. Engng. Sci. 39 (1984) 593–599.

    Article  Google Scholar 

  16. G. Moore and A. Spence, The calculation of turning points of non-linear equations, SIAM J. Numer. Anal. 17 (1980) 567–576.

    Article  Google Scholar 

  17. G. Nicolis and I. Prigogine, Self-organization in Non-equilibrium Systems (Wiley, New York, 1977).

    Google Scholar 

  18. I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems II, J. Chem. Phys. 48 (1968).

    Google Scholar 

  19. W.C. Rheinboldt and J.V. Burkardt, A locally parametrized continuation process, ACM-TOMS 9 (1983) 215–241.

    Article  Google Scholar 

  20. D. Roose and V. Hlavacek, A direct method for the computation of Hopf bifurcation points, SIAM J. Appl. Math. 46 (1985) 879–894.

    Article  Google Scholar 

  21. D. Roose, Numerical computation of origins for Hopf bifurcation in a two-parameter problem, in: T. Küpper, R. Seydel and H. Troger, Eds., Bifurcation: Analysis, Algorithms, Applications, Internat. Ser. Numer. Math. 79 (Birkhäuser, Basel, 1987).

    Google Scholar 

  22. D. Roose and B. De Dier, Numerical determination of an emanating branch of Hopf bifurcation points in a two-parameter problem, Report TW82, Dept. Computer Science, K.U. Leuven, 1987; also, SIAM J. Sci. Stat. Comp., to appear.

    Google Scholar 

  23. R. Seydel, Numerical computation of branch points in nonlinear equations, Numer. Math., 33 (1979) 339–352.

    Article  Google Scholar 

  24. A. Spence and B. Werner, Nonsimple turning points and cusps, IMA J. Numer. Anal. 2 (1987) 314–427.

    Google Scholar 

  25. A. Spence, K.A. Cliffe and A.D. Jepson, A note on the calculation of paths of Hopf bifurcations, J. Comp. Appl. Math. 26(1&2) (1989) 125–131 (this issue).

    Article  Google Scholar 

  26. A.M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. London B237 (1952) 37–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Basel AG

About this chapter

Cite this chapter

De Dier, B., Roose, D., Van Rompay, P. (1990). Interaction between fold and Hopf curves leads to new bifurcation phenomena. In: Mittelmann, H.D., Roose, D. (eds) Continuation Techniques and Bifurcation Problems. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol 92. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5681-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5681-2_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2397-4

  • Online ISBN: 978-3-0348-5681-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics