Skip to main content

Wiener-Hopf Factorization in the Inverse Scattering Theory for the n-D Schrödinger Equation

  • Chapter
Topics in Matrix and Operator Theory

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 50))

  • 186 Accesses

Abstract

We study the n-dimensional Schrödinger equation, n ≥ 2, with a nonspherically symmetric potential in the class of Agmon’s short range potentials without any positive energy bound states. We give sufficient conditions that guarantee the existence of a Wiener-Hopf factorization of the corresponding scattering operator. We show that the potential can be recovered from the scattering operator by solving a related Riemann-Hilbert problem utilizing the Wiener-Hopf factors of the scattering operator. We also study the properties of the scattering operator and show that it is a trace class perturbation of the identity when the potential is also integrable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. S. Agmon, Spectral Properties of Schrödinger Operators and Scattering Theory, Ann. Scuola Norm. Sup. Pisa 2, 151–218 (1975).

    Google Scholar 

  2. T. Aktosun and C. van der Mee, Solution of the Inverse Scattering Problem for the 3-D Schrödinger Equation by Wiener-Hopf Factorization of the Scattering Operator, J. Math. Phys., to appear.

    Google Scholar 

  3. T. Aktosun and C. van der Mee, Solution of the Inverse Scattering Problem for the 3-D Schrödinger Equation using a Fredholm Integral Equation, Preprint.

    Google Scholar 

  4. H. Bart, I. Gohberg and M. A. Kaashoek, Minimal Factorization of Matrix and Operator Functions, Birkhäuser OT 1, Basel and Boston, 1979.

    Google Scholar 

  5. H. Bart, I. Gohberg and M. A. Kaashoek, Explicit Wiener-Hopf Factorization and Realization. In: I. Gohberg and M. A. Kaashoek, Constructive Methods of Wiener-Hopf Factorization, Birkhäuser OT 21, Basel and Boston, 1986, pp. 235-316.

    Google Scholar 

  6. R. Beals and R. R. Coifman, Multidimensional Inverse Scattering and Nonlinear P.D.E.’s, Proc. Symp. Pure Math. 43, 45–70 (1985).

    Article  Google Scholar 

  7. R. Beals and R. R. Coifman, The D-bar Approach to Inverse Scattering and Nonlinear Evolutions, Physica D 18, 242–249 (1986).

    Article  Google Scholar 

  8. K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, Second Edition, Springer, New York, 1989.

    Book  Google Scholar 

  9. L.D. Faddeev, Increasing Solutions of the Schrödinger Equation, Sov. Phys. Dokl. 10, 1033–1035 (1965) [Dokl. Akad. Nauk SSSR 165, 514-517 (1965) (Russian)].

    Google Scholar 

  10. L.D. Faddeev, Three-dimensional Inverse Problem in the Quantum Theory of Scattering, J. Sov. Math. 5, 334–396 (1976) [Itogi Nauki i Tekhniki 3, 93-180 (1974) (Russian)].

    Article  Google Scholar 

  11. I.C. Gohberg, The Factorization Problem for Operator Functions, Amer. Math. Soc. Transl., Series 2, 49, 130–161 (1966) [Izvestiya Akad. Nauk SSSR, Ser. Matem., 28, 1055-1082 (1964) (Russian)].

    Google Scholar 

  12. I.C. Gohberg and M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monographs, Vol. 18, A.M.S., Providence, 1969 [Nauka, Moscow, 1965 (Russian)].

    Google Scholar 

  13. I.C. Gohberg and J. Leiterer, Factorization of Operator Functions with respect to a Contour. III. Factorization in Algebras, Math. Nachrichten 55, 33–61 (1973) (Russian).

    Article  Google Scholar 

  14. T. Kato, Growth Properties of Solutions of the Reduced Wave Equation with a Variable Coefficient, Comm. Pure Appl. Math. 12, 403–425 (1959).

    Article  Google Scholar 

  15. S. Kuroda, An Introduction to Scattering Theory, Lecture Notes Series, Vol. 51, Math. Inst., Univ. of Aarhus, 1980.

    Google Scholar 

  16. N.I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen, 1953 [Nauka, Moscow, 1946 (Russian)].

    Google Scholar 

  17. A.I. Nachman and M.J. Ablowitz, A Multidimensional Inverse Scattering Method, Studies in Appl. Math. 71, 243–250 (1984).

    Google Scholar 

  18. R.G. Newton, The Gel’fand-Levitan Method in the Inverse Scattering Problem in Quantum Mechanics. In: J.A. Lavita and J.-P. Marchand (Eds.), Scattering Theory in Mathematical Physics, Reidel, Dordrecht, 1974, pp. 193–225.

    Chapter  Google Scholar 

  19. R.G. Newton, Inverse Scattering. II. Three Dimensions, J. Math. Phys. 21, 1698–1715 (1980); 22, 631 (1981); 23, 693 (1982).

    Article  Google Scholar 

  20. R.G. Newton, Inverse Scattering. III. Three Dimensions, Continued, J. Math. Phys. 22, 2191–2200 (1981); 23, 693 (1982).

    Article  Google Scholar 

  21. R.G. Newton, Inverse Scattering. IV. Three Dimensions: Generalized Marchenko Construction with Bound States, J. Math. Phys. 23, 2257–2265 (1982).

    Article  Google Scholar 

  22. R.G. Newton, A Faddeev-Marchenko Method for Inverse Scattering in Three Dimensions, Inverse Problems 1, 371–380 (1985).

    Article  Google Scholar 

  23. R.G. Newton, Eigenvalues of the S-matrix, Phys. Rev. Lett. 62, 1811–1812 (1989).

    Article  Google Scholar 

  24. R.G. Newton, Inverse Schrödinger Scattering in Three Dimensions, Springer, New York, 1989.

    Book  Google Scholar 

  25. R.G. Novikov and G.M. Henkin, Solution of a Multidimensional Inverse Scattering Problem on the Basis of Generalized Dispersion Relations, Sov. Math. Dokl. 35, 153–157 (1987) [Dokl. Akad. Nauk SSSR 292, 814-818 (1987) (Russian)].

    Google Scholar 

  26. R.T. Prosser, Formal Solution of Inverse Scattering Problems, J. Math. Phys. 10, 1819–1822 (1969).

    Article  Google Scholar 

  27. R.T. Prosser, Formal Solution of Inverse Scattering Problems. II, J. Math. Phys. 17, 1775–1779 (1976).

    Article  Google Scholar 

  28. R.T. Prosser, Formal Solution of Inverse Scattering Problems. III, J. Math. Phys. 21, 2648–2653 (1980).

    Article  Google Scholar 

  29. R.T. Prosser, Formal Solution of Inverse Scattering Problems. IV, J. Math. Phys. 23, 2127–2130 (1982).

    Article  Google Scholar 

  30. M. Schechter, Spectra of Partial Differential Operators, North-Holland, Amsterdam, 1971.

    Google Scholar 

  31. R. Weder, Multidimensional Inverse Scattering Theory, Inverse Problems, in press (April 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Basel AG

About this chapter

Cite this chapter

Aktosun, T., van der Mee, C. (1991). Wiener-Hopf Factorization in the Inverse Scattering Theory for the n-D Schrödinger Equation. In: Bart, H., Gohberg, I., Kaashoek, M.A. (eds) Topics in Matrix and Operator Theory. Operator Theory: Advances and Applications, vol 50. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5672-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5672-0_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5674-4

  • Online ISBN: 978-3-0348-5672-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics