Two Models for Earthquake Forerunners

  • V. I. Mjachkin
  • W. F. Brace
  • G. A. Sobolev
  • J. H. Dieterich
Part of the Contributions to Current Research in Geophysics (CCRG) book series (CCRG)


Similar precursory phenomena have been observed before earthquakes in the United States, the Soviet Union, Japan, and China. Two quite different physical models are used to explain these phenomena. According to a model developed by US seismologists, the so-called dilatancy diffusion model, the earthquake occurs near maximum stress, following a period of dilatant crack expansion. Diffusion of water in and out of the dilatant volume is required to explain the recovery of seismic velocity before the earthquake. According to a model developed by Soviet scientists growth of cracks is also involved but diffusion of water in and out of the focal region is not required. With this model, the earthquake is assumed to occur during a period of falling stress and recovery of velocity here is due to crack closure as stress relaxes. In general, the dilatancy diffusion model gives a peaked precursor form, whereas the dry model gives a bay form, in which recovery is well under way before the earthquake. A number of field observations should help to distinguish between the two models: study of post-earthquake recovery, time variation of stress and pore pressure in the focal region, the occurrence of pre-existing faults, and any changes in direction of precursory phenomena during the anomalous period.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I.L. Nersesov, A.N. Semionov and I.G. Simbireva, Space time distribution of ratios of travel times of transverse and longitudinal waves in Garm region, Exp. Seismology (1971), Sbornik, 334.Google Scholar
  2. [2]
    O.M. Barsukov, Relationship between the electrical resistivity of rocks and tectonic processes, Izv. Earth Physics No. 1 (1970), 84.Google Scholar
  3. [3]
    V.I. Ulomov and B.Z. Malashev, O predvestike silnogo tecktonicheskogo zemletria senia, Doke. A.N. SSSR, 176 No. 2 (1967).Google Scholar
  4. [4]
    Y.P. Aggarwal, L.R. Sykes, J. Armbruster and M.L. Sbar, Premonitory changes in seismic velocity and earthquake prediction, Nature 241 (1973), 101.CrossRefGoogle Scholar
  5. [5]
    J.H. Whitcomb, J.D. Garmany and D.L. Anderson, Earthquake prediction: Variation of seismic velocities before the San Fernando earthquake, Science 180 (1973), 632.CrossRefGoogle Scholar
  6. [6]
    R. Robinson, R.L. Wesson and W.L. Ellsworth, Variation of P-wave velocity before the Bear Valley, California, earthquake of 24 February 1972, Science 184 (1974), 1281.CrossRefGoogle Scholar
  7. [7]
    H.A. Sadovsky, Otvetstennij redactor. Sbornik. Physica ochaga zemletriasenia, Nauka, Moscow (in press).Google Scholar
  8. [8]
    V.I. Mjachkin, G.A. Sobolev, N.A. Dolbilkina, V.N. Morosov and V.B. Preobrazensky, The study of variations in geophysical fields near focal zones of Kamchatka, Tectonophysics 14 (1972), 287.CrossRefGoogle Scholar
  9. [9]
    W.F. Brace and E.G. Bombolakis, A note on brittle crack growth in compression, J. Geophys. Res. 68 (1963), 3709.CrossRefGoogle Scholar
  10. [10]
    B.V. Kostrov. Teoria Ochaga zemletriasenia Nauka, Moscow (in press).Google Scholar
  11. [11]
    V.M. Finkel, Physica razruschenia, Mettalurgia, Moscow (1970).Google Scholar
  12. [12]
    K. Mogi, Source locations of elastic shocks in the fracturing process in rocks, Bull. Seism. Soc. Japan 46 (1968), 5.Google Scholar
  13. [13]
    M.V. Raz and S.N. Chernischov, Treschinovatost i svoistra treschinovatosty gornick porod, Nedra, Moscow (1970).Google Scholar
  14. [14]
    G.A. Sobolev, The study of precursors of the failure under biaxial compression, this issue Pure and Appl. Geophys. (in press).Google Scholar
  15. [15]
    V.I. Keilis-Borok and L.N. Molinovskaja, Ob odnoi zakonomernosty v vozniknovenii selnikh zemletriasenii. Sbornik Seismikheskie metody issledovania, Nauka, Moscow (1966).Google Scholar
  16. [16]
    S.A. Fedotov, O seismicheskom ziele, vozmozhnosty kolichestvenogo seismicheskogo raionirovania i dolgosrochnom seismikhiskom prognoze. Seismicheskie raionirovanie SSSR, Nauka, Moscow (1968).Google Scholar
  17. [17]
    U.A. Mamadaliev, Ob issledovanii parametrov seismicheskogo regima vo vremeny i prostranstve Voprosy regionalnoi seismichnosty Szednei Azii, Him, Phrunze (1962).Google Scholar
  18. [18]
    A.N. Semionov, Izmenenie otnoschenia vremioi probega poperechnich i prodolnich voln pered silnimy zemletriaseniamji, Izvestia AN SSSR, Physika Zemly, No. 4 (1969).Google Scholar
  19. [19]
    V.I. Mjachkin and N.A. Dolbilkina, Seismicheskoe prosvechivanie ochagorikh zon, VINITI, Moscow (1973).Google Scholar
  20. [20]
    M.S. Anziferov, O primenenii geoakusticheskide metodov k rescheniu problemy prognoza zemletziasenij, Trudy Geophysicheskogo Instituta, No. 25 (1954).Google Scholar
  21. [21]
    I. Tsubokava, V. Ogava and T. Hayashi, Crustal movements before and after the Niigata earthquake, J. Geol. Soc. Japan 10 (1964).Google Scholar
  22. [22]
    L.A. Latinina and R.M. Karmaleeva, Izmerenie medlennikh dvizhenii v zemnoi core kak metod poiska predvestnikov zemletziosenii. Sbornik. Physicheskie osnovania poiskov metodov prognoza zemletriasenii, Nauka, Moscow (1970).Google Scholar
  23. [23]
    A.E. Ostrovskii, Ob izmeneniakh naklonov zemnoi poverkhnosty pered silnimji blizkimi zemletriaseniami. Sbornik. Physicheskie osnovania poiskov metodov prognoza zemletriasenii, Nauke, Moscow (1970).Google Scholar
  24. [24]
    G.A. Sobolev and V.N. Morosov, Localnie vozmuschenia electricheskogo polja na kamchatke i ikh sviazi s zemletriaseniamy. Sbornik. Physicheskie osnovania poiskov metodov prognoza zemletriasenii, Nauka, Moscow (1970).Google Scholar
  25. [25]
    P. Bridgman, Volume changes in the plastic stages of simple compression, J. Appl. Phys. 20 (1949), 1241.CrossRefGoogle Scholar
  26. [26]
    B.W. Paulding, Jr., Crack growth during brittle fracture in compression, PhD thesis, Mass. Inst. of Technology (1965).Google Scholar
  27. [27]
    C.H. Scholz, Experimental study of the fracturing process in brittle rock, J. Geophys. Res. 73 (1968), 1447.CrossRefGoogle Scholar
  28. [28]
    H.E. McKinstry, Structural control of ore deposition in fissure veins, Amer. Inst. Min. Met. Engr. Tech. Pub. No. 1267, Mining Technology (Jan., 1941), 25 pp.Google Scholar
  29. [29]
    E.T. Brown and J.A. Hudson, Progressive collapse of simple block-jointed systems, Australian Geomechanics Jour. 22 (1972), 49.Google Scholar
  30. [30]
    D. Tocher, Anisotropy in rocks under simple compression, Trans. Amer. Geophys. Un. 38 (1957), 89.CrossRefGoogle Scholar
  31. [31]
    S. Matsuchima, Variation of the elastic wave velocities of rocks in the process of deformation and fracture under high pressure, J. Physics of the Earth 8, Kyoto Univ. Bull. No. 32 (1960), 1.Google Scholar
  32. [32]
    W.F. Brace and A.S. Orange, Electrical resistivity changes in saturated rocks during fracture and frictional sliding, J. Geophys. Res. 73 (1968), 1433.CrossRefGoogle Scholar
  33. [33]
    A. Nur, Dilatancy, pore fluids, and premonitory variations of t s/t p travel times, Bull. Seismol. Soc. Amer. 62 (1972), 1217.Google Scholar
  34. [34]
    C.H. Scholz, L.R. Sykes and Y.P. Aggarwal, Earthquake prediction: A physical basis, Science 181 (1973), 803.CrossRefGoogle Scholar
  35. [35]
    W.F. Brace, Current laboratory studies pertaining to earthquake prediction, Tectonophysics 6 (1968), 75.CrossRefGoogle Scholar
  36. [36]
    D.L. Anderson and J.H. Whitcomb, The dilatancy-diffusion model of earthquake prediction, Proc. Conf. on Tectonic Problems of the San Andreas Fault System, edited by R.L. Kovach and A. Nur, Stanford Univ. Publ. XIII (1973), 417.Google Scholar
  37. [37]
    K. Hadley, Laboratory investigation of dilatancy and motion on fault surfaces at low confining pressures, Proc. Conf. on Tectonic Problems of the San Andreas Fault System, edited by R.L. Kovach and A. Nur, Stanford Univ. Publ. XIII (1973), 427.Google Scholar
  38. [38]
    W.F. Brace, Dilatancy-related electrical resistivity changes in rocks, this issue Pure and Appl. Geophys. 112 (1974), 701.CrossRefGoogle Scholar
  39. [39]
    B. Brady, Theory of earthquakes, Part I, A scale independent theory of rock failure, Pure and Appl. Geophys. (in press).Google Scholar
  40. [40]
    K. Mogi, Regularities in the spatial and temporal distribution of large earthquakes and earthquake prediction, in Symposium on Earthquake Forerunners Searching Tashkent, USSR (1974).Google Scholar
  41. [41]
    W.S. Stuart, Diffusionless dilatancy model for earthquake precursors, Geophys. Res. Letters, Vol. 1 (1974), 261.CrossRefGoogle Scholar
  42. [42]
    V.F. Bouchkovskij, Izmenenio gradienta electricheskogo potenziala atmospheri kak odin iz vos mogenich predvestnikov zemletria senij, Problemi prognoza zemletriasenij, Moskva, Uzdatelstvo A.N. SSSR (1954).Google Scholar

Copyright information

© Springer Basel AG 1975

Authors and Affiliations

  • V. I. Mjachkin
    • 1
  • W. F. Brace
    • 2
  • G. A. Sobolev
    • 1
  • J. H. Dieterich
    • 3
  1. 1.Institute of Earth PhysicsMoscowUSSR
  2. 2.MIT Earth Sciences DepartmentCambridgeUSA
  3. 3.US Geological SurveyMenlo ParkUSA

Personalised recommendations