Skip to main content

The Effect of Prolonged Direct Electrical Stimulation upon the Enzymes of Fatty Acid Activation, Transport and Oxidation in Rat Skeletal Muscle

  • Chapter
Metabolic Adaptation to Prolonged Physical Exercise
  • 231 Accesses

Abstract

It has been established that plasma unesterified long chain fatty acids (FFA) are a major substrate used as an energy source by skeletal muscle during prolonged submaximal activity [5, 6, 19, 24]. The ability of the muscle to take advantage of this potential energy depends upon the capacity to activate, transport and oxidize these intramuscular FFA molecules. The responses of the enzymes of fatty acid activation, transport and oxidation to a single bout of prolonged electrical stimulation were examined in order to better assess the potential of in situ skeletal muscle to utilize FFA to fulfill acutely imposed metabolic demands. To this end, the activities of the enzymes ATP dependent palmitoyl CoA-synthetase (EC 6.2. 1–3) carnitine palmitoyl transferase (EC 2.3.1.-) 3 hydroxyacyl — CoA dehydrogenase (EC 1.1–1–35) and acetyl — CoA acyl transferase (EC 2–3–1–16) were measured following forty-five minutes of direct electrical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Augenfeld, J. and Fritz, I. B.: Carnitine Palmitoyl Transferase Activity and Fatty Acid Oxidation by Livers from Fetal and Neonatal Rats. Cand. J. Bioch. 48, 288–294 (1970).

    Article  Google Scholar 

  2. Bass, A., BrdiczKA, D., Eyer, P., Hofer, S. and Pette, D.: Metabolic Differentiation of Distinct Muscle Types at the Level of Enzymatic Organization. Eur. J. Biochem. 10, 198–206 (1969).

    Google Scholar 

  3. Brosnan, J. T., Kiopec, B. and Fritz, I. B.: The Localization of Carnitine Palmitoyl Transferase on the Inner Membrane of Bovine Liver Mitochondria. J. B. C. 248, 4075— 4082 (1973).

    Google Scholar 

  4. Garland, P. B., Shepherd, D. and Yates, D. W.: Steady State Concentrations of Coenzyme A in Rat Liver Mitochondria Oxidizing Palmitate. Bioch. J. 97, 587–594 (1966).

    Google Scholar 

  5. Havel, R. J., Carlson, L. A., Ekeland, L. G. and Holmgren, A.: Turnover Rate and Oxidation of Different Free Fatty Acids in Man During Exercise. J. Appl. Physiol. 19, 613–618 (1964).

    Google Scholar 

  6. Havel, R. J., Naimark, A. and Borchgrevink, C. F.: Turnover Rate and Oxidation of Free Fatty Acids of Blood Plasma in Man During Exercise: Studies During Continuous Infusion of Palmitate-1-C14. J. Clinical Investigation 42, 1054–1063 (1956).

    Article  Google Scholar 

  7. Hill, U. T.: Colorimetric Determination of Fatty Acids and Esters. Anal. Chem. 19, 932–933 (1947).

    Article  Google Scholar 

  8. Hoppel, C. C. and Tomec, R. J.: Carnitine Palmitoyl Transferase. J. B. C. 247, 832–841 (1972).

    Google Scholar 

  9. Keul, J., Doll, E. and Haralambie, G.: Freie Fettsäuren, Glycerin und Triglycerine in arteriellem und femoralvenösem Blut vor und nach einem vierwöchigen körperlichen Training. Pflugers Archives 316, 194–204 (1970).

    Article  Google Scholar 

  10. Kopec, B. and Fritz, I. B.: Comparison of Properties of Carnitine Palmitoyl Transferase I with Those of Carnitine Palmitoyl Transferase II, and Preparation of Antibodies to Carnitine Palmitoyl Transferases. J. B. C. 248, 4069–4074 (1973).

    Google Scholar 

  11. Kornberg, A. and Pricer, W. E.: Enzymatic Synthesis of the Coenzyme A Derivatives of Long Chain Fatty Acids. J. B. C. 204, 239–243 (1953).

    Google Scholar 

  12. Lopes-Cardozo, M., Vaartjes, W. J. and Van Den Bergh, S. G.: Regulation of Pyruvate Metabolism by the Mitochondrial Energy State: The Effect of PalmitoylCoenzyme A. F.E.B.S. 28, 265–270 (1972).

    Google Scholar 

  13. Lowry, O. H., Roseborough, N. J., Farr, A. L. and Randall, R. J.: Protein Measurement with the Folin Phenol Reagent. J.B.C. 193, 265–275 (1951).

    Google Scholar 

  14. Molù, P. A. and HoLloszy, J. O.: Exercise Induced Increase in Capacity of Skeletal Muscle to Oxidize Palmitate. Proc. Soc. Exp. Biol. Med. 134, 789–792 (1970).

    Google Scholar 

  15. Ontko, J. A.: Endogenous Hepatic Ketogenesis Cofactor Requirements. Bioch. Biophys. Acta 137, 1-13 (1967).

    Google Scholar 

  16. Pande, S.V.: Reversal by CoA of Palmity-CoA Inhibition of Long Chain CoA Synthetase Activity. Biochem. Biophys. Acta 306, 15–20 (1973).

    Article  Google Scholar 

  17. Pande, S. V. and Mead, J. F.: Long Chain Fatty Acid Activation in Subcellular Preparations from Rat Liver. J. B. C. 243, 352–361 (1968).

    Google Scholar 

  18. Paul, P. and IssExurz, B.: Roles of Extra-Muscular Energy Sources in the Metabolism of the Exercised Dog. J. Appl. Physiol. 22, 615–622 (1967).

    Google Scholar 

  19. Pette, D.: Metabolic Differentiation of Distinct Muscle Types at the Level of Enzyme Organization. In Muscle Metabolism During Exercise; B. Pernow and B. Saltin (Eds.), pp. 33–49 ( New York, Plenum Press, 1971 ).

    Google Scholar 

  20. Rendon, A. and Waksman, A.: Release and Binding of Proteins and Enzymes with Isolated Inner Mitochondrial Membranes. Bioch. Biophys. Res.-Commun. 50, 814–819 (1973).

    Article  Google Scholar 

  21. Stern, J. R.: Enzymes of Acetoacetate Formation and Breakdown: B Ketothiolase. In Methods of Enzyme Analysis, by H. U. Bergmeyer, pp. 837–845 ( New York, Academic Press, 1963 ).

    Google Scholar 

  22. Van-Tol, A. and Hulsmann, W. C.: The Localization of Palmitoyl-CoA: Carnitine Palmitoyl Transferase in Rat Liver. Bioch. Biophys. Acta 189, 342–353 (1969).

    Google Scholar 

  23. Waterson, R. M. and Hill, R. L.: Enoyl Coenzyme A Hydratase (crotonase). J.B.C. 247, 5258–5265 (1972).

    Google Scholar 

  24. Zierler, K. L., Maseri, A., Kilassen, G., Rabinowitz, D. and Burgess, J.: Muscle Metabolism during Exercise in Man. Trans. Assoc. Amer. Physicians 81, 266–273 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Howald Jacques R. Poortmans (President of the Research Group on Biochemistry of Exercise)

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Basel AG

About this chapter

Cite this chapter

Saville, W.A., Edington, D.W. (1975). The Effect of Prolonged Direct Electrical Stimulation upon the Enzymes of Fatty Acid Activation, Transport and Oxidation in Rat Skeletal Muscle. In: Howald, H., Poortmans, J.R. (eds) Metabolic Adaptation to Prolonged Physical Exercise. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5523-5_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5523-5_56

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-0725-7

  • Online ISBN: 978-3-0348-5523-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics