Skip to main content

Abstract

Let A: L2(Ω) → H, Ω ⊆ ℝn, H a Hilbert space, be a linear bounded injective operator. With Hq we denote either the Sobolev space Hq(Ω) or the Sobolev space \({\text{H}}_{\text{O}}^{\text{q}}\left( \Omega \right)\) of distributions in Hq(ℝn) with support in Ω. The norm in Hq is denoted by ∥ · ∥q. We assume that there is a c > O such that for all f ∈ L2(Ω)

$$c{\left\| f \right\|_{ - a}}{\mkern 1mu} {\mkern 1mu} \left\| {Af} \right\|{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \frac{1}{c}{\mkern 1mu} {\mkern 1mu} {\left\| f \right\|_{ - a}}$$
((1.1))

for some a > O, i.e. the norms ∥f∥−a, ∥Af∥ are equivalent. It follows that the equation Af = g is ill-posed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arsenin, V. YA.-Ivanov, V.V. (1968) The Effect of Regularization of Order p. USSR Comp. Math, and Math. Phys. 8, 221–225.

    Article  Google Scholar 

  2. Babuska, I. — Aziz, A.K. (AP 1972) Survey Lectures on the Mathematical Foundations of the Finite Element Method, in: Aziz, A.K. (ed.): The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations.

    Google Scholar 

  3. Bramble, J.H.-Scott, R.S. (1978) Simultaneous Approximation in Scales of Banach Spaces. Math. Comp. 32, 947–954.

    Article  Google Scholar 

  4. Cullum, J. (1979) The Effective Choice of the Smoothing Norm in Regularization. Math. Comp. 33, 149–170.

    Article  Google Scholar 

  5. Cuppen, J.J.M. (1979) Regularization Methods and Parameter Estimation Methods for the Solution of Fredholm Integral Equations for the First Kind. Preprint, Amsterdam.

    Google Scholar 

  6. Herman, G.T. (1980) Image Reconstruction from Projections. Academic Press.

    Google Scholar 

  7. Köckler, N. (1975) Parameterwahl und Fehlerabschätzung bei der regularisierten Lösung von inkorrekt gestellten Problemen. Dissertation, Mainz.

    Google Scholar 

  8. Marti, J.T. (1978) An Algorithm for Computing Minimum Norm Solutions of Fredholm Integral Equations of the First Kind. SIAM J. Numer. Anal. 15, 1071–1076.

    Article  Google Scholar 

  9. Micchelli, CA. — Rivlin, T.J. (1977) A Survey of Optimal Recovery, in: Micchelli, CA. — Rivlin, T.J. (eds.): Optimal Estimation in Approximation Theory. Plenum Press.

    Google Scholar 

  10. Miller, K. (1970) Least Squares Methods for Ill-Posed Problems with a Prescribed Bound. SIAM J. Math. Anal. 1, 52–74.

    Article  Google Scholar 

  11. Natterer, F. (1977) Regularisierung schlecht gestellter Probleme durch Projektionsverfahren. Numer. Math. 28, 329–341.

    Article  Google Scholar 

  12. Natterer, F. (1977) The Finite Element Method for Ill-Posed Problems. RAIRO Analyse Numérique 11, 271–278.

    Google Scholar 

  13. Natterer, F. (1980) A Sobolev Space Analysis for Picture Reconstruction. SIAM J. Appl. Math. 39, 402–411.

    Article  Google Scholar 

  14. Tanana, V.P.-Danilin, A.R. (1977) (MR 56 # 1760) The Optimality of Regularizing Algorithms in the Solution of Ill-Posed Problems. Differential Equations 12, 937–939.

    Google Scholar 

  15. Tikhonov, A.N. — Arsenin, V.Y. (1977) Solution of Ill-Posed Problems. Winston & Sons.

    Google Scholar 

  16. Wahba, G. (1977) Practical Solutions to Linear Operator Equations when the data are noisy. SIAM J. Numer. Anal. 14, 651–667.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Basel AG

About this chapter

Cite this chapter

Natterer, F. (1983). On the Order of Regularization Methods. In: Hämmerlin, G., Hoffmann, KH. (eds) Improperly Posed Problems and Their Numerical Treatment. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol 63. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5460-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5460-3_14

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5462-7

  • Online ISBN: 978-3-0348-5460-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics