Shannon’s Sampling Theorem Cauchy’s Integral Formula, and Related Results

  • Paul L. Butzer
  • Sigmar Ries
  • Rudolf L. Stens

Abstract

Cauchy’s integral formula is compared with Shannon’s sampling theorem. It is shown that each can be deduced from the other by elementary means.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ahlfors, L.V., Complex Analysis (3rd Ed.). McGraw-Hill Book Company, New York, 1979.Google Scholar
  2. [2]
    Apostol, T.M., Mathematical Analysis. Addison-Wesley Publishing Company, Reading, 1957.Google Scholar
  3. [3]
    Behnke, H. — Sommer, F., Theorie der analytischen Funktionen einer komplexen Veränderlichen (Studienausgabe, 3rd Ed.).Springer Verlag, Berlin, 1976.Google Scholar
  4. [4]
    Butzer, P.L., A survey of the Whittaker -Shannon sampling theorem and some of its extensions. J.Math. Res. Exposition 3(1983), 185–212.Google Scholar
  5. [5]
    Butzer, P.L. — Nessel, R.J., Fourier Analysis and Approximation. Birkhäuser Verlag, Basel and Academic Press, New York, 1971.CrossRefGoogle Scholar
  6. [6]
    Butzer, P.L. — Ries, S. — Stens, R.L., The Whittaker — Shannon sampling theorem, related theorems and extensions. In: Proc. Jordan — IEEE Conf. (Amman, 25.–28.4.1984).Google Scholar
  7. [7]
    Butzer, P.L. — Splettstosser, W., A sampling theorem for duration-limited functions with error estimates. Inform. and Control 34 (1977), 55–65.CrossRefGoogle Scholar
  8. [8]
    Butzer, P.L. — Stens, R.L., The Poisson summation formula, Whittaker’s cardinal series and approximate Integration. In: Proc. Second Edmonton Conf. on Approximation Theory (Edmonton, 7.–11.6.1983; Eds. Z. Ditzian — A. Meir — S. Riemenschneider — A. Sharma). Amer. Math Soc, Providence, 1983; pp. 19–36.Google Scholar
  9. [9]
    Churkin, J.I. — Jakowlew, C.P. — Wunsch, G., Theorie und Anwendung der Signalabtastung. Verlag Technik, Berlin, 1966.Google Scholar
  10. [10]
    Fichtenholz, G.M., Differential- und Integralrechnung II (6th Ed.). VEB Deutscher Verlag der Wissenschaften, Berlin, 1974.Google Scholar
  11. [11]
    Hille, E., Analytic Function Theory I. Ginn and Company, Boston, 1959.Google Scholar
  12. [12]
    Jagerman, D.L. — Fogel, L., Some general aspects of the sampling theorem. IRE Trans. Inform. Theory IT-2, (1956), 139–146.CrossRefGoogle Scholar
  13. [13]
    Knopp, K., Theory and Applications of Infinite Series. Hafner Publishing Company, New York, 1971.Google Scholar
  14. [14]
    Nikol’skií, S.M., Approximation of Functions of Several Variables and and Imbedding Theorems. Springer — Verlag, Berlin, 1975.CrossRefGoogle Scholar
  15. [15]
    Ries, S. — Stens, R.L., Pointwise convergence of sampling series. In: Proc. Second European Signal Processing Conf. (Erlangen, 12. — 16.9.1983; Ed. H.W. Schüssler). North Holland Publishing Company, Amsterdam, 1983, pp. 5–7.Google Scholar
  16. [16]
    de la Vallée — Poussin, Ch.J., Sur la convergence des formules d’inter-polation entre ordonnées équidistantes. Bull. Acad. Roy. Belg. 1908, 319–410.Google Scholar
  17. [17]
    Wunsch, G., Systemtheorie der Informationstechnik. Akademische Verlags-gesellschaft Geest & Portig, Leipzig, 1971.Google Scholar

Copyright information

© Springer Basel AG 1984

Authors and Affiliations

  • Paul L. Butzer
    • 1
  • Sigmar Ries
    • 1
  • Rudolf L. Stens
    • 1
  1. 1.Lehrstuhl A für MathematikRheinisch-Westfälische Technische HochschuleAachenGermany

Personalised recommendations