Skip to main content

Part of the book series: Institut für Baustatik und Konstruktion ((IBK,volume 163))

  • 35 Accesses

Zusammenfassung

Wie aus den Versuchsergebnissen in Kap. 6 zu ersehen, setzen sich die Verschiebungen in der Trennfläche aus reversiblen und irreversiblen Anteilen zusammen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Argyris J.H., Faust G., Szimmat J. et al.: Recent developments in the finite element analysis of prestressed concrete reactor vessels. 2nd SMIRT, Berlin (D) 1973, paper H1/1. Nucl. Eng. Design 28 (1974), 42–75.

    Article  Google Scholar 

  2. Aubry D., Des Crois P.H.: Numerical algorithm for an elastoplastic constitutive equation with two yield surfaces. 3rd ICONMIG, Aachen (D) 1979. Proc. [Wittke] 1, 283–288.

    Google Scholar 

  3. Basso R., Berti G., Cossalter V.: Experimental and theoretical analysis on the stick-slip problem. Int. Conf. “Computational Plasticity”, Barcelona (E) 1987. Proc. [Owen et al.] 1, 231–242.

    Google Scholar 

  4. Batant Z.P.: Work inequalities for plastic fracturing materials. Int. J. Solids Struct. 19 (1980), 873–901.

    Google Scholar 

  5. Batant Z.P., General Discussion at IABSE Coll. “Advanced Mechanics of Reinforced Concrete”, Delft (NL) 1981. Work. Comm. Rep. 34, p. 248.

    Google Scholar 

  6. Carol I., Alonso E.E.: A new joint element for the analysis of fractu- red rock. 5th ISRM, Melbourne (AUS) 1983. Prepr. F, 147–151.

    Google Scholar 

  7. Carol I., Gens A., Alonso E.E.: A three-dimensional elastoplastic joint element. Int. Symp. “Fundamentals of Rock Joints”, Björkliden (S) 1985. Proc. [Stephansson], 441–451.

    Google Scholar 

  8. Chen E.Y.-T., Schnobrich W.C.: Models for the post-cracking behavior of plain concrete under short term monotonic loading. Comp. & Struct. 13 (1981), 213–221.

    Article  Google Scholar 

  9. Chen E.Y.-T., Schnobrich W.C.: Material modelling of plain concrete. IABSE Coll. “Advanced Mechanics of Reinforced Concrete”, Delft (NL) 1981. Work. Comm. Rep. 34, 31–52.

    Google Scholar 

  10. Chen W.F., Ting E.C.: Constitutive models for concrete structures. ASCE J. 106 (1980) EM1, 1–19.

    Google Scholar 

  11. Chen W.F.: Plasticity in reinforced concrete. McGraw-Hill, New York 1982.

    Google Scholar 

  12. Chi H.-M., Powell G.H.: Computational procedures for inelastic finite element analysis. UC/SESM-73/02, UC Berkeley 1973.

    Google Scholar 

  13. Cramer H., Wunderlich W., Kutter H.K., Rahn W.: FE analysis of stress distribution, induced fracture and post-failure behaviour along a shear zone in rock. 3rd ICONMIG, Aachen (D) 1979. Proc. [Wittke] 2, 505–513.

    Google Scholar 

  14. Cramer H.: Numerische Behandlung nichtlinearer.Probleme der Boden- and Felsmechanik mit elasto-plastischen Stoffgesetzen. KIB Mittlg. 80–5, Ruhr-Univ. Bochum 1980.

    Google Scholar 

  15. Curnier A.: A rather general theory of friction, inspired from the classical theory of plasticity, includes contact impenetrability. Int. J. Solids Struct. 20 (1984) 7, 637–647.

    Article  Google Scholar 

  16. Desai C.S., Siriwardane H.J.: A concept of correction funcions to account for non-associative characteristics of geologic materials. Int. J. Num. Anal. Meth. Gomech. 4 (1980), 377–387.

    Article  Google Scholar 

  17. Desai C.S., Galagoda H.M., Wathagula G.W.: Hierarchical modelling for geologic materials and discontinuities — Joints, interfaces. 2nd Int. Conf. “Constitutive Laws for Engineering Materials”, Tucson/Az. 1987. Proc. [Desai et al’.], 1, 81–94.

    Google Scholar 

  18. DiMaggio F.L., Sandler I.S.: Material model for granular soils. ASCE J. 97 (1971) EM3, 935–950.

    Google Scholar 

  19. Divakar M.P., Fafitis A., Shah S.P.: Constitutive modelling of rough interfaces in sliding shear. 2nd Int. Conf. “Constitutive Laws for Engineering Materials”, Tucson/Az. 1987. Proc. [Desai et al.], 2, 1027–1034.

    Google Scholar 

  20. Drucker D.C.: A definition of stable inelastic material. J. Appl. Mech. 26 (1959), 101–106.

    Google Scholar 

  21. Drucker D.C.: Concept of path independence and material stability of soils. IUTAM Symp. “Rheology and Soil Mechanics”, Grenoble (F) 1964. Proc. [Kravtchenko, Sirieys], 24–46.

    Google Scholar 

  22. Dunders J., Comninou M.: An educational elasticity problem with friction — 1. Loading and unloading for weak friction, J. Appl. Mech. 48 (1981), 841–845;

    Article  Google Scholar 

  23. Dunders J., Comninou M.: An educational elasticity problem with friction — 2. Unloading for strong friction and reloading, 49 (1982), 47–51;

    Google Scholar 

  24. Dunders J., Comninou M.: An educational elasticity problem with friction — 3. General load paths, 50 (1983), 77–84.

    Google Scholar 

  25. Dungar R.: Linear and non-linear modelling of geomechanical media. In: Geomechanical modelling in practice [Dungar, Studer], Balkema, Rotterdam 1986. Ch. 1, 3–46.

    Google Scholar 

  26. Duvaut G.: Problèmes mathematiques de la mechanique — Equilibre d’un solide élastique avec contact unilateral et frottement de Coulomb. C. R. Acad. Sc., Paris 1980, t. 290 serie A, 263–265.

    Google Scholar 

  27. Fishman K.L., Desai C.S.: A constitutive model for hardening behavior of rock joints. 2nd Int. Conf. “Constitutive Laws for Engineering Materials”, Tucson/Az. 1987. Proc. [Desai et al.], 2, 1043–1050.

    Google Scholar 

  28. Fritz P.: Numerische Erfassung rheologischer Probleme in der Felsmecha- nik. Diss. ISETH, Mittlg. 47, Zürich April 1981.

    Google Scholar 

  29. Fung Y.C.: Foundations of solid mechanics. Prentice-Hall, Englewood Cliffs 1965.

    Google Scholar 

  30. Gens A, Potts D.M.: The use of critical state models in numerical analysis of geotechnical problems — A review. Int. Conf. “Computational Plasticity”, Barcelona (E) 1987. Proc. [Desai et al.] 2, 1491–1525.

    Google Scholar 

  31. Hilber H.H., Raisch D.: Nichtlineare zweidimensionale FE-Modelle für praxisnahe Tunnelberechnungen. 11th Int. FE Congr., Baden-Baden (D) 1982. Proc. [IKOSS, Stuttgart], 118–161.

    Google Scholar 

  32. Ichikawa Y., Yamabe T. et al.: Brittle-ductile fracture of a tuffaceous rock and plasticity theory. 1st Int. Conf. “Constitutive Laws for Engineering Materials”, Tucson/Az. 1983. Proc. [Desai, Gallagher], 349–356.

    Google Scholar 

  33. Iwan W.D.: The distributed-element concept of hysteretic modeling and its application to transient response problems. 4th WCEE, Santiago (Chile) 1969. Proc. 2, 45–57.

    Google Scholar 

  34. Iwan W.D.: A model for the dynamic analysis of deteriorating structures. ASME Symp. “Applied Mechanics in Earthquake Engineering”, AMD-8, 1974, 135–162.

    Google Scholar 

  35. Iwan W.D.: A model for the dynamic analysis of deteriorating structures. Application of nonlinear analysis techniques. 5th WCEE, Rome 1973. Proc. 2, 1782–1791.

    Google Scholar 

  36. Ke Hsu-Jun: Non-linear analysis of a joint element and its application in rock engineering. Int. J. Num. Anal. Meth. Geomech. 5 (1981), 229–245.

    Article  Google Scholar 

  37. Ke Hsu-Jun: Some considerations about the constitutive relations of the joints in rock. Int. Symp. “Numerical Models in Geomechanics”, Zürich 1982. Proc. [Dungar et al.], 227–233.

    Google Scholar 

  38. Klee K.-D., Paulun J., Stein E.: Entwicklung inelastischer Stoffgesetze durch Aquivalenz- und Grenzbetrachtungen und ihre numerische Behandlung. Ing.-Archiv 50 (1981), 353–364.

    Article  Google Scholar 

  39. Kovari K.: Micromechanics models of progressive failure in rock and rock-like materials. Symp. Assoc. Geotec. Ital. “Geotechnics of Complex Formations”, Capri 1977. Proc. 1, 307–316.

    Google Scholar 

  40. Krause H., Poll G.: Die Dissipation mechanischer Energie bei der Festkörperreibung. Schmiertechnik+Tribologie 26 (1979) 5, 174–176.

    Google Scholar 

  41. Krieg R.D., Krieg D.B.: Accuracies of numerical solution methods for the elastic-perfectly plastic model. ASME J. Pressure Vessel Techn. 99 (1977) 4, 510–515.

    Article  Google Scholar 

  42. Lade P.V.: Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int. J. Solids Struct. 13 (1977), 1019–1035.

    Article  Google Scholar 

  43. Mandel J.: Conditions de stabilité et postulat de Drucker. IUTAM Symp. “Rheology and Soil Mechanics”, Grenoble (F) 1964. Proc. [Kravtchenko, Sirieys], 58–68.

    Google Scholar 

  44. Marques J.M.M.C.: Stress computation in elastoplasticity. Eng. Comput. 1 (1984), 42–51.

    Article  Google Scholar 

  45. Mehlhorn G., Dinges D., Keuser M., Kolmar W.: Some aspects of modeling reinforced concrete structures by finite elements. Europe-U.S. Symp. “FE Methods for Nonlinear Problems”, Trondheim (N) 1985. Prepr. 2, 16. 1–28.

    Google Scholar 

  46. Michalowski R., Mróz Z.: Associated and non-associated sliding rules in contact friction. Archiw. Mech. Stos. 30 (1978) 3, 259–276.

    Google Scholar 

  47. Mondkar D.P., Powell G.H.: Static and dynamic analysis of nonlinear structures. UCB/EERC-75/10, 1975.

    Google Scholar 

  48. Mondkar D.P., Powell G.H.: Gap-friction element (type 5) for the ANSR-II program. UCB/EERC-80/23, 1980.

    Google Scholar 

  49. Mróz Z.: On hypoelasticity and plasticity approaches to constitutive modelling of inelastic behaviour of soils. Int. J. Num. Anal. Meth. Geomech. 4 (1980) 1, 45–55.

    Article  Google Scholar 

  50. Mühlhaus H.B.: Berücksichtigung von Unstetigkeiten im Verzerrungsfeld bei der Lösung von Randwertproblemen in der Felsmechanik. SFB 77 (Proj. C.4), Jahresber. 1976, Univ. Karlsruhe 1977, 223–228.

    Google Scholar 

  51. Nayak G.C., Zienkiewicz O.C.: Elasto-plastic stress analysis — A generalization for various constitutive relations including strain softening. Int. J. Num. Meth. Eng. 5 (1972), 113–135.

    Article  Google Scholar 

  52. Nelson I. Baladi G.Y.: Outrunning shock computed with different models. ASCE J. 103 (1977) EM3, 377–393.

    Google Scholar 

  53. Oden J.T., Martins J.A.C.: Models and computational methods for dynamic friction phenomena. 3rd FENOMECH’84. Comp. Meth. Appl. Mech. Eng. 52 (1985), 527–634.

    Article  Google Scholar 

  54. Olsson W.A.: A constitutive model for frictional slip on rock interfaces. Mechanics of Materials 3 (1984), 295–299.

    Article  Google Scholar 

  55. Ortiz M., Popov E.P.: Accuracy and stability of integration algorithms for elastoplastic constitutive relations. Int. J. Num. Meth. Eng. 21 (1985) 9, 1561–1576.

    Article  Google Scholar 

  56. Ortiz M., Simo J.C.: An analysis of a new class of integration algorithms for elastoplastic constitutive relations. Int. J. Num. Meth. Eng. 23 (1986), 353–366.

    Article  Google Scholar 

  57. Owen D.R.J., Prakash A., Zienkiewicz O.C.: Finite element analysis of non-linear composite materials by use of overlay systems. Comp. & Struct. 4 (1974) 6, 1251–1267.

    Article  Google Scholar 

  58. Pande G.N.: Viscoplastic algorithm for modelling tensile nonlinearity in rock and concrete structures. ASME Meetg. “Mechanics of Bimodulus Materials” [Bert], AMD-33, 1979.

    Google Scholar 

  59. Pande G.N., Shen A.: A two surface multi-laminate model for dynamic analysis of rock structures. 4th Int. Conf. ‘Numer. Methods in Geomechanics’, Edmonton (CA) 1982. Proc. ( Ed. Eisenstein ) 1, 421–426.

    Google Scholar 

  60. Plesha M.E.: Constitutive models for rock discontinuities with dilatancy and surface degradation. Int. J. Num. Anal. Meth. Geomech. 11 (1987) 4, 345–362.

    Article  Google Scholar 

  61. Potts D.M., Gens A.: Correcting for yield surface drift in elasto-plastic finite element analysis. 2nd Int. Conf. “Numerical Methods for Nonlinear Problems”, Barcelona (E) 1984. Proc. [Taylor et al.], 1024–1034.

    Google Scholar 

  62. Prévost J.-H., Höeg K.: Soil mechanics and plasticity analysis of strain softening. Géotechnique 25 (1975) 2, 279–297.

    Article  Google Scholar 

  63. Riddel R., Newmark N.M.: Force-deformation models for nonlinear analysis. ASCE J. 105 (1979) ST12, 2773–2778.

    Google Scholar 

  64. Roscoe K.H., Burland J.B.: On the generalized stress-strain behavior of wet clay. In: Engineering plasticity [Heyman, Lecki], Cambridge Univ. Press, London 1968.

    Google Scholar 

  65. Saiidi M.: Hysteresis models for reinforced concrete. ASCE J. 108 (1982) STS, 1077–1087.

    Google Scholar 

  66. Sandler I.S., DiMaggio F.L., Baladi G.Y.: Generalized cap model for geologic materials. ASCE J. 102 (1976) GT7, 683–699.

    Google Scholar 

  67. Schad H.: Nichtlineare Stoffgleichungen für Böden and ihre Verwendung bei der numerischen Analyse von Grundbauaufgaben. Diss., Baugrundinstitut Mittlg. 10, Univ. Stuttgart 1979.

    Google Scholar 

  68. Schreyer H.L., Kulak R.F., Kramer J.M.: Accurate numerical solutions for elasto-plastic models. J. Pressure Vessel Techn. 101 (1979), 226–234.

    Article  Google Scholar 

  69. Sloan A.C.: Substepping schemes for the numerical integration of elastoplastic stress-strain relations. Int. J. Num. Meth. Eng. 24 (1987) 5, 893–911.

    Article  Google Scholar 

  70. Sofianos A.I., Watson J.O.: Analysis of excavations in jointed rock of infinite extent. Int. J. Num. Anal. Meth. Geomech. 10. (1986) 2, 125–136.

    Article  Google Scholar 

  71. Takeda T., Sozen M.A., Nielsen N.N.: Reinforced concrete response to simulated earthquakes. ASCE J. 96 (1970) ST12, 2557–2573.

    Google Scholar 

  72. Tani S., Nomura S. et al.: Earthquake response of reinforced concrete structures considering the discontinuous failure process to collapse. 5th WCEE, Rome (I) 1973. Proc. 1, 1379–1388.

    Google Scholar 

  73. Tani S., Nomura S. et al.: Response of reinforced concrete structures by ‘skeleton curve’ and ‘normalized characteristic loop’ to ground motions. Proc. 2, 2136–2139.

    Google Scholar 

  74. Umemura H., Takizawa H.: Dynamic response of reinforced concrete buildings. IABSE Struct. Eng. Doc. 2, Zurich 1982.

    Google Scholar 

  75. Vermeer P.A., De Borst R.: Non-associated plasticity for soils, concrete and rock. Heron 29 (1984) 3.

    Google Scholar 

  76. Wanninger R.: Zur Lösung von Grundbauaufgaben mit Hilfe von elastoplastischen Stoffgesetzen, vorgeführt am Einzelfundament un an der verankerten Wand. Diss., Mittlg. Versuchsanst. f. Bodenmech. u. — Grundbau Heft 23, TH Darmstadt Aug. 1980.

    Google Scholar 

  77. Yoshikawa H., Tanabe T.: An analytical model for frictional shear slip of cracked concrete. IABSE Coll. “Computational Mechanics of Reinforced Concrete”, Delft (NL) 1987. Work. Comm. Rep. 54, 75–86.

    Google Scholar 

  78. Yuritzinn T., Panet M., Guenot A.: Analysis of tunnels in strain softening grounds. 4th ICONMIG, Edmonton (CA) 1982. Proc. [Eisenstein] 2, 635–644.

    Google Scholar 

  79. Ziegler H.: A modification of Prager’s hardening rule. Quarterly of Appl. Math. 17 (1959), 55–65.

    Google Scholar 

  80. Zienkiewics O.C., Valliapan S., King I.P.: Elasto-plastic solutions of engineering problems — ‘initial stress’ finite element approach. Int. J. Num. Meth. Eng. 1 (1969), 75–100.

    Article  Google Scholar 

  81. Zienkiewicz O.C., Nayak G.C., Owen D.R.J.: Composite and ‘overlay’ models in numerical analysis of elasto-plastic continua. Int. Symp. “Foundations of Plasticity”, Warcawa (PL) 1972. Proc. [Sawczuk; Noordhoff, Leyden 1973 ], 107–123.

    Google Scholar 

  82. Zienkiewicz O.C., Humpheson C., Lewis R.W.: Associated and non-associated visco-plasticity and plasticity in soil mechanics. Géotechnique 25 (1975) 4, 671–689.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Basel AG

About this chapter

Cite this chapter

Hohberg, JM. (1988). Konstitutive Beziehungen für Trennflächen. In: Trennflächenformulierungen für die statische und dynamische Berechnung von Bogenstaumauern. Institut für Baustatik und Konstruktion, vol 163. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5251-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5251-7_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-1993-9

  • Online ISBN: 978-3-0348-5251-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics