Skip to main content

Effects of Cation Disordering in a Natural MgAl2O4 Spinel Observed by Rectangular Parallelepiped Ultrasonic Resonance and Raman Measurements

  • Chapter
Experimental Techniques in Mineral and Rock Physics

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

At moderate temperatures, the elastic properties of natural MgAl2O4 spinel differ in several significant ways from properties of synthetic spinels. Below 1000 K, the ultrasonic resonant frequencies of an ordered natural spinel change significantly after heat treatment; at higher temperatures, both types of spinels have similar resonant responses. The temperature derivatives of the elastic constants of an ordered spinel also differ from those of disordered spinels at moderate temperatures; again, at higher temperatures, both types of spinels have similar behaviors. The Raman spectra also differ below 1000 K for ordered natural and disordered spinels and are similar at higher temperatures and after cooling to ambient temperature. We associate these changes in ultrasonic resonance and Raman spectra of spinel with cation disordering at high temperature which may be quenched by cooling. We deduce estimates of the inversion parameter from the relative intensities of the two Alg Raman modes in very good agreement with estimates made from other measurements. We find that C 11 and C 12 decrease by 4 and 8%, respectively, with 20% inversion in spinel; C 44 is less sensitive to cation order. These results imply that previous measurements of the adiabatic elastic constants of spinels at ambient conditions have been affected by the state of cation disorder of the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, O. L., and Goto, T. (1989), Measurement of Elastic Constant of Mantle-related Minerals at Temperatures up to 1800 K, Phys. Earth Plan. Int. 55, 241–253.

    Article  Google Scholar 

  • Anderson, O. L., Isaak, D. G., and Oda, H. (1992), High Temperature Elastic Constant Data on Minerals Relevant to Geophysics, Rev. Geophys. 30, 57–90.

    Article  Google Scholar 

  • Askarpour, V., Manghnani, M. H., Fassbender, S., and Yoneda, A. (1991), Single-crystal Elastic Properties of Spinel MgAl 2O4 up to 1273 K by Brillouin Spectroscopy (abstract), EOS Trans. AGU 72, 435.

    Google Scholar 

  • Chang, Z. P., and Barsch, G. R. (1973), Pressure Dependence of Single-crystal Elastic Constants and Anharmonic Properties of Spinel, JGR 78, 2418–2433.

    Article  Google Scholar 

  • Chopelas, A., and Hofmeister, A. M. (1991), Vibrational Spectroscopy of Aluminate Spinels at 1 Atm and of MgAl 2O4 to over 200 kbar, Phys. Chem. Minerals 18, 279–293.

    Article  Google Scholar 

  • Cynn, H., Sharma, S., Cooney, T., and Nicol, M. (1992), High-temperature Raman Investigation of Order-disorder Behavior in the MgAl 2O4 Spinel, Phys. Rev. B 45, 500–502.

    Article  Google Scholar 

  • Duffy, T. S., and Anderson, D. L. (1989), Seismic Velocities in Mantle Minerals and the Mineralogy of the Upper Mantle, J. Geophys. Res. 94, 1895–1912.

    Article  Google Scholar 

  • Finger, L. W., Hazen, R., and Hofmeister, A. M. (1986), High-pressure Crystal Chemistry of Spinel (MgAl 2O4) and Magnetite (Fe3O4): Comparisons with Silicate Spinels, Phys. Chem. Minerals 13, 215–220.

    Article  Google Scholar 

  • Fraas, L. M., Moore, J. E., and Salzberg, J. B. (1973), Raman Characterization Studies of Synthetic and Natural MgAl 2O4 Crystals, J. Chem. Phys. 58, 3585.

    Article  Google Scholar 

  • Goto, T., and Anderson; O. L. (1989), Elastic Constants of Corundum to 1825 K, J. Geophys. Res. 94, 7588–7602.

    Article  Google Scholar 

  • Gwanmesia, G. D., Rigden, S., Jackson, I., and Liebermann, R. C. (1990), Pressure Dependence of Elastic Wave Velocity for β-Mg 2SiO4 and the Composition of the Earth’s Mantle, Science 250, 794–797.

    Article  Google Scholar 

  • Häfner, S., and Laves, F. (1966), Ordnung/Unordnung und Ultrarotabsorption, III. Die Systeme MgAl 2O4-Al2O3 und MgAl2O4-LiAl5O8, Z. Krist. 115, 321–330.

    Article  Google Scholar 

  • Hashin, Z., and Shtrikman, S. (1962), A Variational Approach to the Theory of the Elastic Behavior of Polycrystals, J. Mech. Phys. Solids 10, 343–352.

    Article  Google Scholar 

  • Hilbert, E. G., and Graham, E. K. (1989), Elastic Properties of Stoichiometric MgAl 2O4 Spinel (abstract), EOS Trans. AGU 70, 1368.

    Google Scholar 

  • Isaak, D. G. (1992), High-temperature Elasticity of Iron-bearing Olivines, J. Geophys. Res. 97, 1871–1885.

    Article  Google Scholar 

  • Isaak, D. G., Anderson, O. L., Goto, T., and Suzuki, I. (1989a), Elasticity of Single-crystal Forsterite Measured to 1700 K, J. Geophys. Res. 94, 5895–5906.

    Article  Google Scholar 

  • Isaak, D. G., Anderson, O. L., and Goto, T. (1989b), Measured Elastic Moduli of Single-crystal MgO up to 1800 K, Phys. Chem. Minerals 16, 704–713.

    Article  Google Scholar 

  • Isaak, D. G., Anderson, O. L., and Oda, H. (1992), High Temperature Thermal Expansion and Elasticity of Calcium-rich Garnets, Phys. Chem. Minerals 19, 106–120.

    Article  Google Scholar 

  • Ishii, M., Mirashi, J., and Yamanaka, T. (1982), Structure and Lattice Vibrations of Mg-Al Spinel Solid Solution, Phys. Chem. Minerals 8, 64–68.

    Article  Google Scholar 

  • Lewis, M. F. (1966), Elastic Constants of Magnesium Aluminate Spinel, J. Acous. Soc. Am. 40, 728–729.

    Article  Google Scholar 

  • Liu, H. P., Schock, R. N., and Anderson, D. L. (1975), Temperature Dependence of Single-crystal Spinel (MgAl 2O4) Elastic Constants from 293 to 423 K Measured by Light-sound Scattering in the Raman-Nath Region, Geophys. J. R. Astr. Soc. 42, 217–250.

    Article  Google Scholar 

  • McMillan, P. R., and Hofmeister, A. M., Infrared and Raman spectroscopy in spectroscopic methods in mineralogy and geology. In Reviews in Mineralogy (ed. Hawthorne, F. C.) (Mineralogical Society of America, Washington D.C. 1988) pp. 99–159.

    Google Scholar 

  • Migliori, A., Stekel, A., Sarrao, J. L., Visscher, W. M., Bell, T., and Lei, M. (1991), Techniques and processes for the measurement of the resonances of small single crystal. In Proc. 28th Annual Technical Meeting of the Society of Engineering Sciences, Nov. 6–8, 1991, Gainesville, FL.

    Google Scholar 

  • Millard, R. L., Peterson, R. C., and Hunter, B. K. (1990), Temperature Dependence of Cation Disorder in MgAl 2O4 Spinel Using Aluminum-27 MAS NMR (abstract), EOS Trans. AGU 71, 653.

    Google Scholar 

  • Millard, R. L., Peterson, R. C., and Hunter, B. K. (1992), Temperature Dependence of Cation Disorder in MgAl 2O4 Spinel Using 27Al and 17 O Magic-angle Spinning NMR, Am. Min. 77, 44–52.

    Google Scholar 

  • Mysen, B. O., Finger, L. W., Virgo, D., and Seifert, F. A. (1982), Curve-fitting of Raman Spectra of Silicate Glasses, Am. Min. 67, 686–695.

    Google Scholar 

  • Narasimhan, C. S., and Swamy, C. S. (1980), Studies on the Solid State Properties of the Solid Solution System MgAl 2−xFexO4, Phys. Stat. Sol. (a) 59, 817–826.

    Article  Google Scholar 

  • Navrotsky, A., and Kleppa, O. J. (1967), The Thermodynamics of Cation Distributions in Simple Spinels, J. Inor. Nuc. Chem. 29, 2701–2714.

    Article  Google Scholar 

  • O’Connell, R. J., and Graham, E. K. (1971), Equation of State of Stoichiometric Spinel to 10 Kbar and 800°C (abstract), EOS Trans. AGU 71, 359.

    Google Scholar 

  • Ohno, I. (1990), Rectangular Parallelepiped Resonance Method for Piezoelectric Crystals and Elastic Constants of Alpha-Quartz, Phys. Chem. Minerals 17, 371–378.

    Article  Google Scholar 

  • O’Horo, M. P., Frisillo, A. L., and White, W. B. (1973), Lattice Vibrations of MgAl 2O4 Spinel, J. Phys. Chem. Solids 34, 23.

    Article  Google Scholar 

  • O’Neill, H. St. C., and Navrotsky, A. (1983), Simple Spinels: Crystallographic Parameters, Cation Radii, Lattice Energies, and Cation Distribution, Am. Min. 68, 81–194.

    Google Scholar 

  • Peterson, R. C., Lager, G. A., and Hitterman, R. L. (1991), A Time-of-flight Neutron Powder Diffraction Study of MgAl 2O4 at Temperatures up to 1273 K, Am. Min. 76, 1455–1458.

    Google Scholar 

  • Robie, R. A., Hemingway, B. S., and Fisher, J. R. (1978), Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (10 5 Pascals) Pressure and at Higher Temperatures, Geol. Surv. Bull. 1452.

    Google Scholar 

  • Schmocker, U., and Waldner, F. (1976), The Inversion Parameter with Respect to the Space Group of MgAl 2O4 Spinels, J. Phys. C 9, L235–L237.

    Article  Google Scholar 

  • Slack, G. A., Ham, F. S., and Chrenko, R. M. (1966), Optical Absorption of Tetrahedral Fe 2+ (3d6) in Cubic ZnS, CdTe, and MgAl 2O4, Phys. Rev. 152, 376–402.

    Article  Google Scholar 

  • Striefler, M. E., and Barsch, G. R., Lattice dynamics of MgAl 2O4 in relation to the space group of spinel. In Proc. Lattice Dynamics (ed. Balkanski, M.) (Flammarion Pub. Co. Paris 1978) pp. 75–76.

    Google Scholar 

  • Sumino, Y., Ohno, I., Goto, T., and Kumazawa, M. (1976), Measurement of Elastic Constants and Internal Frictions on Single-crystal MgO by Rectangular Parallelepiped Resonance, J. Phys. Earth 24, 263–273.

    Article  Google Scholar 

  • Suzuki, I., and Kumazawa, M. (1980), Anomalous Thermal Expansion in Spinel MgAl 2O4, Phys. Chem. Minerals 5, 279–284.

    Google Scholar 

  • Thompson, P., and Grimes, N. W. (1978), Observation of Low Energy Phonons in Spinel, Solid State Comm. 25, 609–611.

    Article  Google Scholar 

  • Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Lee, T. Y. R., Thermal Expansion, Nonmetallic Solids: Thermophysical Properties of Matter, 13 (Plenum, New York-Washington, 1977).

    Google Scholar 

  • Viñuela, J. S. D., and Areán, C. O. (1987), Distribution of Copper Ions among Octahedral and Tetrahedral Sites in Cu xMg1−xA12O4 Spinels, Phys. Stat. Sol. (a) 101, 57–61.

    Article  Google Scholar 

  • White, W. B., and Keramidas, V. G. (1972), Application of Infrared and Raman Spectroscopy to the Characterization of Order-disorder in High Temperature Oxides, National Bureau of Standards Special Publication 364, 113–126.

    Google Scholar 

  • Wood, D. L., Imbusch, G. F., Macfarlane, R. M., Kisliuk, P., and Larkin, D. M. (1968), Optical Spectrum of Cr 3+ Ions in Spinels, J. Chem. Phys. 48, 5255–5263.

    Article  Google Scholar 

  • Wood, B. J., Kirkpatrick, Y., and Montez, B. (1986), Cation Order-disorder Phenomena in MgAl 2O4, Am. Min. 71, 999–1006.

    Google Scholar 

  • Yamamoto, S., and Anderson, O. L. (1987), Elasticity and Anharmonicity of Potassium Chloride at High Temperature, Phys. Chem. Minerals 14, 332–340.

    Article  Google Scholar 

  • Yamamoto, S, Ohno, I., and Anderson, O. L. (1987), High Temperature Elasticity of Sodium Chloride, J. Phys. Chem. Solids 48, 143–151.

    Article  Google Scholar 

  • Yamanaka, T., and Takeuchi, Y. (1983), Order-disorder Transition in MgAl 2O4 Spinel at High Temperatures up to 1700°C, Z. Krist. 165, 65–78.

    Article  Google Scholar 

  • Yamanaka, T., and Ishii, M. (1986), Raman Scattering and Lattice Vibrations of Ni 2SiO4 Spinel at High Temperature, Phys. Chem. Minerals 13, 156–160.

    Article  Google Scholar 

  • Yeganeh-Haeri, A., and Weidner, D. J. (1990), Single-crystal Elastic Properties of MgAl 2O4 Spinel up to 1200 K (abstract), EOS Trans. AGU 71, 620.

    Google Scholar 

  • Yoneda, A. (1990), Pressure Derivatives of Elastic Constants of Single Crystal MgO and MgAl 2O4, J. Phys. Earth 38, 19–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Basel AG

About this chapter

Cite this chapter

Cynn, H., Anderson, O.L., Nicol, M. (1993). Effects of Cation Disordering in a Natural MgAl2O4 Spinel Observed by Rectangular Parallelepiped Ultrasonic Resonance and Raman Measurements. In: Liebermann, R.C., Sondergeld, C.H. (eds) Experimental Techniques in Mineral and Rock Physics. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5108-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5108-4_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-5028-4

  • Online ISBN: 978-3-0348-5108-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics