Skip to main content

A Generalization of Some Regularity Criteria to the Navier–Stokes Equations Involving One Velocity Component

  • Chapter
Recent Developments of Mathematical Fluid Mechanics

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

  • 1636 Accesses

Abstract

We present generalizations of results concerning conditional global regularity of weak Leray–Hopf solutions to incompressible Navier–Stokes equations presented by Zhou and Pokorný in articles (Pokorný, Electron J Differ Equ (11):1–8, 2003; Zhou, Methods Appl Anal 9(4):563–578, 2002; Zhou, J Math Pure Appl 84(11):1496–1514, 2005); see also Neustupa et al. (Quaderni di Matematica, vol. 10. Topics in Mathematical Fluid Mechanics, 2002, pp. 163–183) We are able to replace the condition on one velocity component (or its gradient) by a corresponding condition imposed on a projection of the velocity (or its gradient) onto a more general vector field. Comparing to our other recent results from Axmann and Pokorný (A note on regularity criteria for the solutions to Navier-Stokes equations involving one velocity component, in preparation), the conditions imposed on the projection are more restrictive here, however due to the technique used in Axmann and Pokorný (A note on regularity criteria for the solutions to Navier-Stokes equations involving one velocity component, in preparation), there appeared a specific additional restriction on geometrical properties of the reference field, which could be omitted here.

To Yoshihiro Shibata

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Š. Axmann, M. Pokorný, A note on regularity criteria for the solutions to Navier-Stokes equations involving one velocity component (in preparation)

    Google Scholar 

  2. C. Cao, E.S. Titi, Regularity criteria for the three-dimensional Navier–Stokes equations. Indiana U. Math. J. 57(6), 2643–2660 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. H. El-Owaidy et al., On some new integral inequalities of Gronwall–Bellman type. Appl. Math. Comput. 106, 289–303 (1999)

    MathSciNet  MATH  Google Scholar 

  4. G.P. Galdi, An introduction to the Navier–Stokes initial–boundary value problem, in Fundamental Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics (Birkhäuser, Basel, 2000), pp. 1–70

    Google Scholar 

  5. C. He, Regularity for solutions to the Navier–Stokes equations with one velocity component regular. Electron. J. Differ. Equ. 2002(29), 1–13 (2002)

    MathSciNet  Google Scholar 

  6. E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4(1), 213–231 (1951)

    MathSciNet  MATH  Google Scholar 

  7. A. Kufner, O. John, S. Fučík, Function Spaces, 1st edn. (Academia, Prague, 1977)

    MATH  Google Scholar 

  8. I. Kukavica, M. Ziane, One component regularity for the Navier–Stokes equations. Nonlinearity 19(2), 453–469 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd edn. (Gordon and Breach, New York/London/Paris, 1969)

    MATH  Google Scholar 

  10. O.A. Ladyzhenskaya, Sixth problem of the millenium: Navier–Stokes equations, existence and smoothness. Russ. Math. Surv. 58(2), 251–286 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pure Appl. 12(2), 1–82 (1933)

    MATH  Google Scholar 

  12. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  13. J. Neustupa, P. Penel, Regularity of a suitable weak solution to the Navier–Stokes equations as a consequence of regularity of one velocity component, in Applied Nonlinear Analysis, ed. by A. Sequeira et al. (Kluwer Academic/Plenum Pulishers, New York, 1999), pp. 391–402

    Google Scholar 

  14. J. Neustupa, A. Novotný, P. Penel, An interior regularity of weak solution to the Navier–Stokes equations in dependence on one component of velocity, in Quaderni di Matematica, ed. by A.O. Eden. Topics in Mathematical Fluid Mechanics, vol. 10 (Dept. Math., Seconda Univ. Napoli, Caserta, 2002), pp. 163–183

    Google Scholar 

  15. M. Pokorný, On the result of He concerning the smoothness of solutions to the Navier–Stokes equations. Electron. J. Differ. Equ. 2003(11), 1–8 (2003)

    MathSciNet  MATH  Google Scholar 

  16. R. Temam, Some developments on Navier–Stokes equations in the second half of the 20th century, in Development of Mathematics 1950–2000 (Birkhäuser, Basel, 2000), pp. 1049–1106

    MATH  Google Scholar 

  17. Y. Zhou, A new regularity criterion for the Navier–Stokes equations in terms of the gradient of one velocity component. Methods Appl. Anal. 9(4), 563–578 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Y. Zhou, A new regularity criterion for weak solutions to the Navier–Stokes equations. J. Math. Pure Appl. 84(11), 1496–1514 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Zhou, M. Pokorný, On a regularity criterion for the Navier–Stokes equations involving gradient of one velocity component. J. Math. Phys. 50(12), 123514 (2009)

    Google Scholar 

  20. Y. Zhou, M. Pokorný, On the regularity criterion of the Navier–Stokes equations via one velocity component. Nonlinearity 23(5), 1097–1107 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of the first author was supported by the grant SVV-2015-260226. The work of the second author was partially supported by the grant No. 201/09/0917 of the Grant Agency of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Pokorný .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Basel

About this chapter

Cite this chapter

Axmann, Š., Pokorný, M. (2016). A Generalization of Some Regularity Criteria to the Navier–Stokes Equations Involving One Velocity Component. In: Amann, H., Giga, Y., Kozono, H., Okamoto, H., Yamazaki, M. (eds) Recent Developments of Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0939-9_5

Download citation

Publish with us

Policies and ethics