Skip to main content

Perna canaliculus (Green-Lipped Mussel): Bioactive Components and Therapeutic Evaluation for Chronic Health Conditions

  • Chapter
  • First Online:
Novel Natural Products: Therapeutic Effects in Pain, Arthritis and Gastro-intestinal Diseases

Part of the book series: Progress in Drug Research ((PDR,volume 70))

Abstract

Perna canaliculus (Green-Lippped Mussel) is found only in New Zealand waters and is cultivated and manufactured for both the food and nutraceutical industry world-wide. P. canaliculus has traditionally been used as a therapeutic to treat various arthralgias in both humans and animals; however, clinical research reports provide conflicting results. Numerous in vitro studies have reported anti-inflammatory activity of the mussel under various conditions and also demonstrated a synergistic effect with pharmaceutical medications such as non-steroidal anti-inflammatory drugs (NSAIDs) with P. canaliculus protecting the gastrointestinal mucosal lining against such medications. It is proposed that the anti-inflammatory activity demonstrated by P. canaliculus is predominantly due to the lipid fraction, however, among the major classes of compounds found in mussel meat, proteins and peptides are the largest with isolates demonstrating various anti-microbial, anti-inflammatory, anti-oxidant, bioadhesive and anti-hypertensive activities. A review of the bioactive components, their function and therapeutic application is outlined in this chapter. Furthermore, we hypothesise and provide supportive evidence that the gastrointestinal microbiota play an important role in disease processes such as Rheumatoid arthritis and Osteoarthritis and also in the efficacy of P. canaliculus in chronic inflammatory conditions. The metabolic capacity of intestinal microbiota can modify bioactive food components altering the hosts’ exposure to these components, potentially enhancing or diminishing their health effects. Understanding the interaction of the bioactive compounds in P. canaliculus with commensal and pathogenic bacteria may facilitate the development of novel interventions to control intestinal and extraintestinal inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Arachidonic acid

ARA:

American rheumatism association

5-HETE:

5-Hydroxyeicosatetraenoic acid

CRP:

C-reactive protein

DHA:

Docosahexaenoic acid

ESR:

Erythrocyte sedimentation rate

EPA:

Eicosapentaenoic acid

E/LFT:

Electrolytes/liver function test

FFAs:

Free fatty acids

FBC:

Full blood count

GIT:

Gastrointestinal tract

GC-MS:

Gas chromatography-mass spectrometry

GSRS:

Gastrointestinal symptom rating scale

HAQ:

Health assessment questionnaire

Hb:

Haemoglobin

IBD:

Inflammatory bowel disease

IgG:

Immunoglobulin G

IL-1:

Interleukin-1

KOH:

Potassium hydroxide

LCPUFA:

Long chain polyunsaturated fatty acids

LOX:

Lipoxygenase

NSAIDs:

Non-steroidal anti-inflammatory drugs

NMR:

Nuclear magnetic resonance

NF-kB:

Nuclear factor-kappa B

OA:

Osteoarthritis

PCR:

Polymerase chain reaction

PGE2:

Prostaglandin E2

PMN:

Polymorphonuclear leukocytes

PG-PS:

Peptidoglycan-polysaccharides

RA:

Rheumatoid arthritis

RBC:

Red blood count

SCFA:

Short chain fatty acids

SFE:

Supercritical fluid extraction

SF-12V2™:

SF-12 heath questionnaires

TNF-α:

Tumour necrosis factor—α

TXB2:

Thromboxane-2

WOMAC:

Western Ontario McMaster Universities arthritis index

VAS:

Visual analogue scale

References

  • Al-Janabi AA (2010) In vitro antibacterial activity of Ibuprofen and acetaminophen. J Glob Infect Dis 2(2):105–108

    Article  PubMed Central  PubMed  Google Scholar 

  • Audeval B, Bouchacourt P (1986) Double-blind trial against placebo of extract of Perna canaliculus (green-lipped mussel) in osteoarthritis of the knee. Gaz Med 93:111–116

    Google Scholar 

  • Aroma New Zealand Ltd (2014) Personal correspondence with director (Ben Winters Jnr)

    Google Scholar 

  • Brien S, Prescott P, Bashir N, Lewith H, Lewith G (2008a) Systematic review of the nutritional supplements dimethyl sulfoxide (DMSO) and methylsulfonylmethane (MSM) in the treatment of osteoarthritis. Osteoarthritis Cartilage 16(11):1277–1288

    Article  CAS  PubMed  Google Scholar 

  • Brien S, Prescott P, Coghlan B, Bashir N, Lewith G (2008b) Systematic review of the nutritional supplement Perna canaliculus (green-lipped mussel) in the treatment of osteoarthritis. QJM 101(3):167–179

    Article  CAS  PubMed  Google Scholar 

  • Butters DE, Whitehouse MW (2003) Treating inflammation: some (needless) difficulties for gaining acceptance of effective natural products and traditional medicines. Inflammopharmacology 11(1):97–110

    Article  CAS  PubMed  Google Scholar 

  • Campbell J, Fahey G Jr, Wolf B (1997) Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J Nutr 127:130–136

    CAS  PubMed  Google Scholar 

  • Carter JD, Gerard HC, Espinoza LR, Ricca LR, Valeriano J, Snelgrove J, Oszust C, Vasey FB, Hudson AP (2009) Chlamydiae as etiologic agents in chronic undifferentiated spondylarthritis. Arthritis Rheum 60(5):1311–1316

    Article  PubMed Central  PubMed  Google Scholar 

  • Caughey DE, Grigor RR, Caughey EB, Young P, Gow PJ, Stewart AW (1983) Perna canaliculus in the treatment of rheumatoid arthritis. Eur J Rheumatol Inflamm 6(2):197–200

    CAS  PubMed  Google Scholar 

  • Charlet M, Chernysh S, Philippe H, Hetru C, Hoffmann JA, Bulet P (1996) Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Biol Chem 271(36):21808–21813

    Article  CAS  PubMed  Google Scholar 

  • Chen VL, Kasper DL (2014) Interactions between the intestinal microbiota and innate lymphoid cells. Gut Microbes 5(1):129–140

    Article  PubMed Central  PubMed  Google Scholar 

  • Cho S, Jung Y, Seong S, Park H, Byun K, Lee D, Song E, Son J (2003) Clinical efficacy and safety of Lyprinol, a patented extract from New Zealand green-lipped mussel (Perna canaliculus) in patients with osteoarthritis of the hip and knee: a multicenter 2-month clinical trial. Eur Ann Allergy Clin Immunol 35(6):212–216

    PubMed  Google Scholar 

  • Cobb C, Ernst E (2006) Systematic review of a marine nutriceutical supplement in clinical trials for arthritis: the effectiveness of the New Zealand green-lipped mussel Perna canaliculus. Clin Rheumatol 25(3):275–284

    Article  PubMed  Google Scholar 

  • Couch RA, Ormrod DJ, Miller TE, Watkins WB (1982) Anti-inflammatory activity in fractionated extracts of the green-lipped mussel. N Z Med J 95(720):803–806

    CAS  PubMed  Google Scholar 

  • Coulson S, Butt H, Vecchio P, Gramotnev H, Vitetta L (2013) Green-lipped mussel extract (Perna canaliculus) and glucosamine sulphate in patients with knee osteoarthritis: therapeutic efficacy and effects on gastrointestinal microbiota profiles. Inflammopharmacology 21(1):79–90

    Article  CAS  PubMed  Google Scholar 

  • Coulson S, Vecchio P, Gramotnev H, Vitetta L (2012) Green-lipped mussel (Perna canaliculus) extract efficacy in knee osteoarthritis and improvement in gastrointestinal dysfunction: a pilot study. Inflammopharmacology 20(2):71–76

    Article  PubMed  Google Scholar 

  • Cuzzolin L, Conforti A, Donini M, Adami A, Del Soldato P, Benoni G (1994) Effects on intestinal microflora, gastrointestinal tolerability and antiinflammatory efficacy of diclofenac and nitrofenac in adjuvant arthritic rats. Pharmacol Res 29(1):89–97

    Article  CAS  PubMed  Google Scholar 

  • De Palma G, Capilla A, Nadal I, Nova E, Pozo T, Varea V, Polanco I, Castillejo G, Lopez A, Garrote JA, Calvo C, Garcia-Novo MD, Cilleruelo ML, Ribes-Koninckx C, Palau F, Sanz Y (2010) Interplay between human leukocyte antigen genes and the microbial colonization process of the newborn intestine. Curr Issues Mol Biol 12(1):1–10

    PubMed  Google Scholar 

  • Dugas B (2000) Lyprinol inhibits LTB4 production in human monocytes. Allerg Immunol 32(7):284–289

    CAS  Google Scholar 

  • Egert M, de Graaf A, Smidt H, de Vos W, Venema K (2006) Beyond diversity: functional microbiomics of the human colon. Trends Microbiol 14:86–91

    Article  CAS  PubMed  Google Scholar 

  • Emelyanov A, Fedoseev G, Krasnoschekova O, Abulimity A, Trendeleva T, Barnes PJ (2002) Treatment of asthma with lipid extract of New Zealand green-lipped mussel: a randomised clinical trial. Eur Respir J 20(3):596–600

    Article  CAS  PubMed  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) Accessed 2014

    Google Scholar 

  • Faulkner P, Quastel J (1956) Anaerobic deamination of D-glucosamine by bacterial and brain extracts. Nature 177:1216–1218

    Article  CAS  PubMed  Google Scholar 

  • Fearman J-A, Bolch CJS, Moltschaniwskyj NA (2009) Energy storage and reproduction in mussels, Mytilus galloprovincialis: the influence of diet quality. J Shellfish Res 28(2):305–312

    Article  Google Scholar 

  • Foley S, Stolarczyk E, Mouni F, Brassart C, Vidal O, Aissi E, Bouquelet S, Krzewinski F (2008) Characterisation of glutamine fructose-6-phosphate amidotransferase (EC 2.6.1.16) and N-acetylglucosamine metabolism in Bifidobacterium. Arch Microbiol 189(2):157–167

    Article  CAS  PubMed  Google Scholar 

  • Fredrick WS, Ravichandran S (2012) Hemolymph proteins in marine crustaceans. Asian Pac J Trop Biomed 2(6):496–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gerard HC, Wang Z, Wang GF, El-Gabalawy H, Goldbach-Mansky R, Li Y, Majeed W, Zhang H, Ngai N, Hudson AP, Schumacher HR (2001) Chromosomal DNA from a variety of bacterial species is present in synovial tissue from patients with various forms of arthritis. Arthritis Rheum 44(7):1689–1697

    Article  CAS  PubMed  Google Scholar 

  • Gibson G, McCartney A, Rastall R (2005) Prebiotics and resistance to gastrointestinal infections. Br J Nutr 93:S31–S34

    Article  CAS  PubMed  Google Scholar 

  • Gibson R, Gibson S, Conway V, Chappell D (1980) Perna canaliculus in the treatment of arthritis. Practitioner 224:955–960

    CAS  PubMed  Google Scholar 

  • Gibson S, Gibson R (1998) The treatment of arthritis with a lipid extract of Perna canaliculus: a randomised trial. Complement Ther Med 6:122–126

    Article  Google Scholar 

  • Gigante G, Tortora A, Ianiro G, Ojetti V, Purchiaroni F, Campanale M, Cesario V, Scarpellini E, Gasbarrini A (2011) Role of gut microbiota in food tolerance and allergies. Dig Dis 29(6):540–549 (Basel, Switzerland)

    Google Scholar 

  • Gill S, Pop M, Deboy R, Eckburg P, Turnbauh P, Samuel B (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359 (New York, NY)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grienke U, Silke J, Tasdemir D (2014) Bioactive compounds from marine mussels and their effects on human health. Food Chem 142:48–60

    Article  CAS  PubMed  Google Scholar 

  • Gruenwald J, Graubaum H, Hansen K, Grube B (2004) Efficacy and tolerability of a combination of LYPRINOL and high concentrations of EPA and DHA in inflammatory rheumatoid disorders. Adv Ther 21(3):197–201

    Article  CAS  PubMed  Google Scholar 

  • Gul’neva M, Noskov SM (2011) Colonic microbial biocenosis in rheumatoid arthritis. Klin Med (Mosk) 89(4):45–48

    Google Scholar 

  • Halliday J (2008) Not all green lipped mussel extracts are created equal. Nutraingredients—Europe

    Google Scholar 

  • Halpern C, Georges M (2000) Anti-inflammatory effects of a stabilized lipid extract of Perna canaliculus (Lyprinol). Townsend Lett Dr Patients 202:109–113

    Google Scholar 

  • Highton T, McArthur A (1975) Pilot study on the effect of New Zealand green mussel on rheumatoid arthritis. N Z Med J 81:261–262

    CAS  PubMed  Google Scholar 

  • Huskisson E, Scott J, Bryans R (1981) Seatone is ineffective in rheumatoid arthritis. Br Med J (Clin Res Ed) 282(6273):1358–1359

    Article  CAS  Google Scholar 

  • Je JY, Park PJ, Byun HG, Jung WK, Kim SK (2005) Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis. Bioresour Technol 96(14):1624–1629

    Article  CAS  PubMed  Google Scholar 

  • Jonsson IM, Mazmanian SK, Schneewind O, Bremell T, Tarkowski A (2003) The role of Staphylococcus aureus sortase A and sortase B in murine arthritis. Microbes Infect/Inst Pasteur 5(9):775–780

    Article  CAS  Google Scholar 

  • Jung W-K, Kim S-K (2009) Isolation and characterisation of an anticoagulant oligopeptide from blue mussel, Mytilus edulis. Food Chem 117(4):687–692

    Article  CAS  Google Scholar 

  • Kempsell K, Cox C, Hurle M, Wong A, Wilkie S, Zanders E, Gaston J, Crowe J (2000a) Reverse transcriptase-PCR analysis of bacterial rRNA for detection and characterization of bacterial species in arthritis synovial tissue. Infect Immun 68(10):6012–6026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kempsell KE, Cox CJ, Hurle M, Wong A, Wilkie S, Zanders ED, Gaston JS, Crowe JS (2000b) Reverse transcriptase-PCR analysis of bacterial rRNA for detection and characterization of bacterial species in arthritis synovial tissue. Infect Immun 68(10):6012–6026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kendall R (2000) Townsend letter for doctors & patients: the examiner of medical alternatives. New Res Clin Rep 2000(204):98–111

    Google Scholar 

  • Koser S, Tribby I, Stuedell J (1961) Glucosamine utilization by some lactic acid bacteria. J Infect Dis 108:324–332

    Article  CAS  PubMed  Google Scholar 

  • Kosuge T, Tsuji K, Ishida H, Yamaguchi T (1986) Isolation of an anti-histaminic Substance from green-lipped mussel (Perna canaliculus). Chem Pharm Bull 34(11):4825–4828

    Article  CAS  PubMed  Google Scholar 

  • Laparra JM, Sanz Y (2010) Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 61(3):219–225

    Article  CAS  PubMed  Google Scholar 

  • Larkin J, Capell H, Sturrock R (1985) Seatone in rheumatoid arthritis: a six-month placebo-controlled study. Ann Rheum Dis 44(3):199–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lau C (2004) Treatment of knee osteoathritis with Lyprinol lipid extract of the green-lipped mussel—a double-blind placebo-controlled study. Progr Nutr 6:17–31

    Google Scholar 

  • Lederberg J (2000) Infectious history. Science 288(5464):287–293 (New York, NY)

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Lum JH, Ng CK, McKay J, Butt YK, Wong MS, Lo SC (2009) Pain controlling and cytokine-regulating effects of Lyprinol, a lipid extract of Perna canaliculus, in a rat adjuvant-induced arthritis model. Evid Based Complement Altern Med 6(2):239–245

    Article  Google Scholar 

  • Lee M, Shin B, Ernst E (2008) Acupuncture for rheumatoid arthritis: a systematic review. Rheumatology 47(12):1747–1753 (Oxford)

    Article  CAS  PubMed  Google Scholar 

  • Lutwak-Mann C (1941) Enzymatic decomposition of amino-sugars. Biochem J 35(5):610–626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Macrides T, Treschow AP, Kalafaris N, Wright PF, Wynne PM (1997)The Anti-inflammatory effects of omega 3 Tetraenoic fatty acids isolated from lipid extract from the mussel, Perna canaliculus. In: EFA & Eicosanoids, p 205

    Google Scholar 

  • Mani S, Lawson JW (2006) In vitro modulation of inflammatory cytokine and IgG levels by extracts of Perna canaliculus. BMC Complement Altern Med 6:1

    Article  PubMed Central  PubMed  Google Scholar 

  • McPhee S, Hodges L, Wright P, Wynne P, Kalafatis N, Harney D, Macrides T (2007) Anti-cyclooxygenase effects of lipid extracts from the New Zealand green-lipped mussel, Perna canaliculus. Comp Biochem Physiol B Biochem Mol Biol 146(3):343–356

    Article  Google Scholar 

  • Mickleborough TD, Vaughn CL, Shei RJ, Davis EM, Wilhite DP (2013) Marine lipid fraction PCSO-524 (lyprinol/omega XL) of the New Zealand green lipped mussel attenuates hyperpnea-induced bronchoconstriction in asthma. Respir Med 107(8):1152–1163

    Article  PubMed  Google Scholar 

  • Miller T, Dodd J, Ormrod D, Geddes R (1993) Anti-inflammatory activity of glycogen extracted from Perna canaliculus (NZ green-lipped mussel). Agents Actions 38 (Special Conference Issue)

    Google Scholar 

  • Miller T, Ormrod D (1980) The anti-inflammatory activity of Perna canaliculus (NZ green lipped mussel). N Z Med J 92(667):187–193

    CAS  PubMed  Google Scholar 

  • Miller TE, Wu H (1984) In vivo evidence for prostaglandin inhibitory activity in New Zealand green-lipped mussel extract. N Z Med J 97(757):355–357

    CAS  PubMed  Google Scholar 

  • Moen K, Brun JG, Madlam TM, Tynning T, Jonsson R (2003) Immunoglobulin G and A antibody responses to Bacteroides forsythus and Prevotella intermedia in sera and synovial fluids of arthritis patients. Clin Diagn Lab Immunol 10(6):1043–1050

    Google Scholar 

  • Murphy K, Mann N, Sinclair A (2003) Fatty acid and sterol composition of frozen and freeze-dried New Zealand green lipped mussel (perna canaliculus) from three sites in New Zealand. Asia Pac J Clin Nutr 12(1):50–60

    CAS  PubMed  Google Scholar 

  • Murphy KJ, Galvin K, Kiely M, Morrissey PA, Mann NJ, Sinclair AJ (2006) Low dose supplementation with two different marine oils does not reduce pro-inflammatory eicosanoids and cytokines in vivo. Asia Pac J Clin Nutr 15(3):418–424

    CAS  PubMed  Google Scholar 

  • Narvaez M, Freites L, Guevara M, Mendoza J, Guderley H, Lodeiros CJ, Salazar G (2008) Food availability and reproduction affects lipid and fatty acid composition of the brown mussel, Perna perna, raised in suspension culture. Comp Biochem Physiol B Biochem Mol Biol 149(2):293–302

    Article  PubMed  Google Scholar 

  • Ogrendik M (2012) Does periodontopathic bacterial infection contribute to the etiopathogenesis of the autoimmune disease rheumatoid arthritis? Discov Med 13(72):349–355

    PubMed  Google Scholar 

  • Olmez N, Wang GF, Li Y, Zhang H, Schumacher HR (2001) Chlamydial nucleic acids in synovium in osteoarthritis: what are the implications? J Rheumatol 28(8):1874–1880

    CAS  PubMed  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J-M, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rainsford KD, Whitehouse M (1980) Gastroprotective and anti-inflammatory properties of green lipped mussel (Perna canaliculus) preparation. Arzneimittelforschung 30(11):2128–2132

    CAS  PubMed  Google Scholar 

  • Rochfort J, Ezernieks V, Maher A, Ingram B, Olsen L (2013) Mussel metabolomics—species discrimination and provenance determination. Food Res Int 54(1):1302–1312

    Article  Google Scholar 

  • Scher JU, Abramson SB (2011) The microbiome and rheumatoid arthritis. Nat Rev Rheumatol 7(10):569–578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scher JU, Ubeda C, Pillinger MH, Bretz W, Buischi Y, Rosenthal PB et al (2010) Characteristic oral and intestinal microbiota in rheumatoid arthritis (RA): a trigger for autoimmunity? Arthritis Rheum 62(10):1390

    Google Scholar 

  • Scotti P, Dearing S, Greenwood D, Newcomb R (2001) Pernin: a novel, self-aggregating haemolymph protein from the New Zealand green-lipped mussel, Perna canaliculus (Bivalvia: Mytilidae). Comp Biochem Physiol 128:767–779

    Article  CAS  Google Scholar 

  • Shen J, Obin MS, Zhao L (2013) The gut microbiota, obesity and insulin resistance. Mol Aspects Med 34(1):39–58

    Article  CAS  PubMed  Google Scholar 

  • Siala M, Gdoura R, Fourati H, Rihl M, Jaulhac B, Younes M, Sibilia J, Baklouti S, Bargaoui N, Sellami S, Sghir A, Hammami A (2009) Broad-range PCR, cloning and sequencing of the full 16S rRNA gene for detection of bacterial DNA in synovial fluid samples of Tunisian patients with reactive and undifferentiated arthritis. Arthritis Res Ther 11(4):R102

    Article  PubMed Central  PubMed  Google Scholar 

  • Singh M, Hodges L, Wright P, Cheah D, Wynne P, Kalafatis N, Macrides T (2008) The CO2-SFE crude lipid extract and the free fatty acid extract from Perna canaliculus haev anti-inflammatory effects on adjuvant-induced arthritis in rats. Comp Biochem Physiol B Biochem Mol Biol 149(2):251–258

    Article  CAS  PubMed  Google Scholar 

  • Singh Y, Ahmad J, Musarrat J, Ehtesham NZ, Hasnain SE (2013) Emerging importance of holobionts in evolution and in probiotics. Gut Pathog 5(1):12

    Article  PubMed Central  PubMed  Google Scholar 

  • Taneja V (2014) Arthritis susceptibility and the gut microbiome. FEBS Lett. doi:10.1016/j.febslet.2014.05.034

    PubMed  Google Scholar 

  • Tenikoff D, Murphy KJ, Le M, Howe PR, Howarth GS (2005) Lyprinol (stabilised lipid extract of New Zealand green-lipped mussel): a potential preventative treatment modality for inflammatory bowel disease. J Gastroenterol 40(4):361–365

    Article  CAS  PubMed  Google Scholar 

  • Toivanen P (2003) Normal intestinal microbiota in the aetiopathogenesis of rheumatoid arthritis. Ann Rheum Dis 62(9):807–811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torres DM, Tooley KL, Butler RN, Smith CL, Geier MS, Howarth GS (2008) Lyprinol only partially improves indicators of small intestinal integrity in a rat model of 5-fluorouracil-induced mucositis. Cancer Biol Ther 7(2):295–302

    Article  CAS  PubMed  Google Scholar 

  • Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249

    Article  CAS  PubMed  Google Scholar 

  • Treschow A, Hodges L, Wrighth P, Wynne P, Kalafatis N, Macrides T (2007) Novel anti-inflammatory ω-3 PUFAs from the New Zealand green-lipped mussel, Perna canaliculus. Comp Biochem Physiol 147:645–656

    Article  CAS  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031

    Article  PubMed  Google Scholar 

  • Ulbricht C, Chao W, Costa D, Nguyen Y, Seamon E, Weissner W (2009) An evidence-based systematic review of green-lipped mussel (Perna canaliculus) by the natural standard research collaboration. J Diet Suppl 6(1):54–90

    Article  PubMed  Google Scholar 

  • Upreti R, Kannan A, Pant A (2010) Experimental impact of aspirin exposure on rat intestinal bacteria, epithelial cells and cell line. Hum Exp Toxicol 29(10):833–843

    Article  CAS  PubMed  Google Scholar 

  • Vaahtovuo J, Munukka E, Korkeamaki M, Luukkainen R, Toivanen P (2008) Fecal microbiota in early rheumatoid arthritis. J Rheumatol 35(8):1500–1505

    CAS  PubMed  Google Scholar 

  • Vaahtovuo J, Toivanen P, Eerola E (2003) Bacterial composition of murine fecal microflora is indigenous and genetically guided. FEMS Microbiol Ecol 44(1):131–136

    Article  CAS  PubMed  Google Scholar 

  • van den Broek MF, van den Berg WB, van de Putte LB, Severijnen AJ (1988) Streptococcal cell wall-induced arthritis and flare-up reaction in mice induced by homologous or heterologous cell walls. Am J Pathol 133(1):139–149

    PubMed Central  PubMed  Google Scholar 

  • van der Heijden IM, Wilbrink B, Tchetverikov I, Schrijver IA, Schouls LM, Hazenberg MP, Breedveld FC, Tak PP (2000) Presence of bacterial DNA and bacterial peptidoglycans in joints of patients with rheumatoid arthritis and other arthritides. Arthritis Rheum 43(3):593–598

    Article  PubMed  Google Scholar 

  • Wakimoto T, Kondo H, Nii H, Kimura K, Egami Y, Oka Y, Yoshida M, Kida E, Ye Y, Akahoshi S, Asakawa T, Matsumura K, Ishida H, Nukaya H, Tsuji K, Kan T, Abe I (2011) Furan fatty acid as an anti-inflammatory component from the green-lipped mussel Perna canaliculus. Proc Natl Acad Sci U S A 108(42):17533–17537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitehouse M, Butters D (2003) Combindation anti-inflammatory therapy: synergism in rats of NSAIDs/corticosteroids with some herbal/animals products. Inflammopharmacology 11(4–6):453–464

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse M, Macrides T, Kalafatis N, Betts W, Haynes D, Broadbent J (1997) Anti-inflammatory activity of a lipid fraction (lyprinol) from the NZ green-lipped mussel. Inflammopharmacology 5(3):237–246

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse MW (2004) Anti-TNF-alpha therapy for chronic inflammation: reconsidering pentoxifylline as an alternative to therapeutic protein drugs. Inflammopharmacology 12(3):223–227

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse MW, Roberts MS, Brooks PM (1999) Over the counter (OTC) oral remedies for arthritis and rheumatism: how effective are they? Inflammopharmacology 7(2):89–105

    Article  CAS  PubMed  Google Scholar 

  • Wolfe J, Nakada H (1956) Glucosamine degradation by Escherichia coli. II. The isomeric conversion of glucosamine 6-PO4 to fructose 6-PO4 and ammonia. Arch Biochem Biophys 64(2):489–497

    Article  CAS  PubMed  Google Scholar 

  • Wolyniak CJ, Brenna JT, Murphy KJ, Sinclair AJ (2005) Gas chromatography-chemical ionization-mass spectrometric fatty acid analysis of a commercial supercritical carbon dioxide lipid extract from New Zealand green-lipped mussel (Perna canaliculus). Lipids 40(4):355–360

    Article  CAS  PubMed  Google Scholar 

  • Wood AR, Apte S, MacAvoy ES, Gardner JP (2007) A molecular phylogeny of the marine mussel genus Perna (Bivalvia: Mytilidae) based on nuclear (ITS1&2) and mitochondrial (COI) DNA sequences. Mol Phylogenet Evol 44(2):685–698

    Article  CAS  PubMed  Google Scholar 

  • Wood LG, Hazlewood LC, Foster PS, Hansbro PM (2010) Lyprinol reduces inflammation and improves lung function in a mouse model of allergic airways disease. Clin Exp Allergy J Br Soc Allergy Clin Immunol 40(12):1785–1793

    Article  CAS  Google Scholar 

  • Zawadzki M, Janosch C, Szechinski J (2013) Perna canaliculus lipid complex PCSO-524 demonstrated pain relief for osteoarthritis patients benchmarked against fish oil, a randomized trial, without placebo control. Mar drugs 11(6):1920–1935

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha Coulson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Basel

About this chapter

Cite this chapter

Coulson, S., Palacios, T., Vitetta, L. (2015). Perna canaliculus (Green-Lipped Mussel): Bioactive Components and Therapeutic Evaluation for Chronic Health Conditions. In: Rainsford, K., Powanda, M., Whitehouse, M. (eds) Novel Natural Products: Therapeutic Effects in Pain, Arthritis and Gastro-intestinal Diseases. Progress in Drug Research, vol 70. Springer, Basel. https://doi.org/10.1007/978-3-0348-0927-6_3

Download citation

Publish with us

Policies and ethics