Skip to main content

Single-Molecule and Single-Particle Imaging of Molecular Motors In Vitro and In Vivo

  • Chapter
  • First Online:
Fluorescent Methods for Molecular Motors

Part of the book series: Experientia Supplementum ((EXS,volume 105))

Abstract

Motor proteins are multi-potent molecular machines, whose localisation, function and regulation are achieved through tightly controlled processes involving conformational changes and interactions with their tracks, cargos and binding partners. Understanding how these complex machines work requires dissection of these processes both in space and time. Complementing the traditional ensemble measurements, single-molecule assays enable the detection of rare or short-lived intermediates and molecular heterogeneities, and the measurements of subpopulation dynamics. This chapter is focusing on the fluorescence imaging of single motors and their cargo. It discusses what is required in order to achieve single-molecule imaging with high temporal and spatial resolution and how these requirements are met both in vitro and in vivo. It also presents a general overview and applied examples of the major single-molecule imaging techniques and experimental assays which have been used to study motor proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim H, Ha T (2013) Single-molecule nanometry for biological physics. Rep Progr Phys Soc 76(1):016601. doi:10.1088/0034-4885/76/1/016601

    Google Scholar 

  2. Walter NG, Huang CY, Manzo AJ, Sobhy MA (2008) Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat Methods 5(6):475–489. doi:10.1038/nmeth.1215

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Yodh JG, Schlierf M, Ha T (2010) Insight into helicase mechanism and function revealed through single-molecule approaches. Q Rev Biophys 43(2):185–217. doi:10.1017/S0033583510000107

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Cai D, Kaul N, Lionberger TA, Wiener DM, Verhey KJ, Meyhofer E (2010) Recording single motor proteins in the cytoplasm of mammalian cells. Methods Enzymol 475:81–107. doi:10.1016/S0076-6879(10)75004-7

    CAS  PubMed  Google Scholar 

  5. Hilario J, Kowalczykowski SC (2010) Visualizing protein-DNA interactions at the single-molecule level. Curr Opin Chem Biol 14(1):15–22. doi:10.1016/j.cbpa.2009.10.035

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Park H, Toprak E, Selvin PR (2007) Single-molecule fluorescence to study molecular motors. Q Rev Biophys 40(1):87–111. doi:10.1017/S0033583507004611

    CAS  PubMed  Google Scholar 

  7. Toseland CP (2013) Fluorescent labeling and modification of proteins. J Chem Biol 6(3):85–95. doi:10.1007/s12154-013-0094-5

    PubMed Central  PubMed  Google Scholar 

  8. Ha T, Tinnefeld P (2012) Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu Rev Phys Chem 63:595–617. doi:10.1146/annurev-physchem-032210-103340

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Harada Y, Sakurada K, Aoki T, Thomas DD, Yanagida T (1990) Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J Mol Biol 216(1):49–68. doi:10.1016/S0022-2836(05)80060-9

    CAS  PubMed  Google Scholar 

  10. Shi X, Lim J, Ha T (2010) Acidification of the oxygen scavenging system in single-molecule fluorescence studies: in situ sensing with a ratiometric dual-emission probe. Anal Chem 82(14):6132–6138. doi:10.1021/ac1008749

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Aitken CE, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94(5):1826–1835. doi:10.1529/biophysj.107.117689

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3(11):891–893. doi:10.1038/nmeth934

    CAS  PubMed  Google Scholar 

  13. Vogelsang J, Kasper R, Steinhauer C, Person B, Heilemann M, Sauer M, Tinnefeld P (2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem 47(29):5465–5469. doi:10.1002/anie.200801518

    CAS  Google Scholar 

  14. Visnapuu ML, Duzdevich D, Greene EC (2008) The importance of surfaces in single-molecule bioscience. Mol Biosyst 4(5):394–403. doi:10.1039/b800444g

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Cisse I, Okumus B, Joo C, Ha T (2007) Fueling protein DNA interactions inside porous nanocontainers. Proc Natl Acad Sci USA 104(31):12646–12650. doi:10.1073/pnas.0610673104

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Rasnik I, Myong S, Cheng W, Lohman TM, Ha T (2004) DNA-binding orientation and domain conformation of the E. coli rep helicase monomer bound to a partial duplex junction: single-molecule studies of fluorescently labeled enzymes. J Mol Biol 336(2):395–408

    CAS  PubMed  Google Scholar 

  17. Rasnik I, McKinney SA, Ha T (2005) Surfaces and orientations: much to FRET about? Acc Chem Res 38(7):542–548. doi:10.1021/ar040138c

    CAS  PubMed  Google Scholar 

  18. Ha T, Rasnik I, Cheng W, Babcock HP, Gauss GH, Lohman TM, Chu S (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419(6907):638–641. doi:10.1038/nature01083

    CAS  PubMed  Google Scholar 

  19. Fili N, Toseland CP, Dillingham MS, Webb MR, Molloy JE (2011) A single-molecule approach to visualize the unwinding activity of DNA helicases. Methods Mol Biol 778:193–214. doi:10.1007/978-1-61779-261-8_13

    CAS  PubMed  Google Scholar 

  20. Heyes CD, Groll J, Moller M, Nienhaus GU (2007) Synthesis, patterning and applications of star-shaped poly(ethylene glycol) biofunctionalized surfaces. Mol Biosyst 3(6):419–430. doi:10.1039/b700055n

    CAS  PubMed  Google Scholar 

  21. Graneli A, Yeykal CC, Prasad TK, Greene EC (2006) Organized arrays of individual DNA molecules tethered to supported lipid bilayers. Langmuir 22(1):292–299. doi:10.1021/la051944a

    CAS  PubMed  Google Scholar 

  22. Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271(5245):43–48

    CAS  PubMed  Google Scholar 

  23. Rhoades E, Gussakovsky E, Haran G (2003) Watching proteins fold one molecule at a time. Proc Natl Acad Sci USA 100(6):3197–3202. doi:10.1073/pnas.2628068100

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Kim H, Tang GQ, Patel SS, Ha T (2012) Opening-closing dynamics of the mitochondrial transcription pre-initiation complex. Nucleic Acids Res 40(1):371–380. doi:10.1093/nar/gkr736

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Aubin JE (1979) Autofluorescence of viable cultured mammalian cells. J Histochem Cytochem 27(1):36–43

    CAS  PubMed  Google Scholar 

  26. Benson RC, Meyer RA, Zaruba ME, McKhann GM (1979) Cellular autofluorescence–is it due to flavins? J Histochem Cytochem 27(1):44–48

    CAS  PubMed  Google Scholar 

  27. Harms GS, Cognet L, Lommerse PH, Blab GA, Schmidt T (2001) Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy. Biophys J 80(5):2396–2408. doi:10.1016/S0006-3495(01)76209-1

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Tsutsui H, Karasawa S, Okamura Y, Miyawaki A (2008) Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Methods 5(8):683–685. doi:10.1038/nmeth.1235

    CAS  PubMed  Google Scholar 

  29. Kredel S, Oswald F, Nienhaus K, Deuschle K, Rocker C, Wolff M, Heilker R, Nienhaus GU, Wiedenmann J (2009) mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLoS One 4(2):e4391. doi:10.1371/journal.pone.0004391

    PubMed Central  PubMed  Google Scholar 

  30. Harms GS, Cognet L, Lommerse PH, Blab GA, Kahr H, Gamsjager R, Spaink HP, Soldatov NM, Romanin C, Schmidt T (2001) Single-molecule imaging of l-type Ca(2+) channels in live cells. Biophys J 81(5):2639–2646. doi:10.1016/S0006-3495(01)75907-3

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Steyer JA, Almers W (2001) A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol 2(4):268–275. doi:10.1038/35067069

    CAS  PubMed  Google Scholar 

  32. Toomre D, Manstein DJ (2001) Lighting up the cell surface with evanescent wave microscopy. Trends Cell Biol 11(7):298–303

    CAS  PubMed  Google Scholar 

  33. Mattheyses AL, Simon SM, Rappoport JZ (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123(Pt 21):3621–3628. doi:10.1242/jcs.056218

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Selvin PR, Ha T (2008) Single-molecule techniques: a laboratory manual. CSHL Press, New York, NY

    Google Scholar 

  35. Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628):2061–2065. doi:10.1126/science.1084398

    CAS  PubMed  Google Scholar 

  36. Testa I, Wurm CA, Medda R, Rothermel E, von Middendorf C, Folling J, Jakobs S, Schonle A, Hell SW, Eggeling C (2010) Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys J 99(8):2686–2694. doi:10.1016/j.bpj.2010.08.012

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Webb SE, Zanetti-Domingues L, Coles BC, Rolfe DJ, Wareham RJ, Martin-Fernandez ML (2012) Multicolour single molecule imaging on cells using a supercontinuum source. Biomed Opt Exp 3(3):400–406. doi:10.1364/BOE.3.000400

    CAS  Google Scholar 

  38. Giebel K, Bechinger C, Herminghaus S, Riedel M, Leiderer P, Weiland U, Bastmeyer M (1999) Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy. Biophys J 76(1 Pt 1):509–516

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Gell C, Berndt M, Enderlein J, Diez S (2009) TIRF microscopy evanescent field calibration using tilted fluorescent microtubules. J Microsc 234(1):38–46. doi:10.1111/j.1365-2818.2009.03147.x

    CAS  PubMed  Google Scholar 

  40. Cai D, McEwen DP, Martens JR, Meyhofer E, Verhey KJ (2009) Single molecule imaging reveals differences in microtubule track selection between Kinesin motors. PLoS Biol 7(10):e1000216. doi:10.1371/journal.pbio.1000216

    PubMed Central  PubMed  Google Scholar 

  41. Cai D, Verhey KJ, Meyhofer E (2007) Tracking single Kinesin molecules in the cytoplasm of mammalian cells. Biophys J 92(12):4137–4144. doi:10.1529/biophysj.106.100206

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5(2):159–161. doi:10.1038/nmeth1171

    CAS  PubMed  Google Scholar 

  43. Vukojevic V, Heidkamp M, Ming Y, Johansson B, Terenius L, Rigler R (2008) Quantitative single-molecule imaging by confocal laser scanning microscopy. Proc Natl Acad Sci USA 105(47):18176–18181. doi:10.1073/pnas.0809250105

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Ma J, Yang W (2010) Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc Natl Acad Sci USA 107(16):7305–7310. doi:10.1073/pnas.0908269107

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Wells NP, Lessard GA, Goodwin PM, Phipps ME, Cutler PJ, Lidke DS, Wilson BS, Werner JH (2010) Time-resolved three-dimensional molecular tracking in live cells. Nano Lett 10(11):4732–4737. doi:10.1021/nl103247v

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Lee J, Miyanaga Y, Ueda M, Hohng S (2012) Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging. Biophys J 103(8):1691–1697. doi:10.1016/j.bpj.2012.09.014

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Cutler PJ, Malik MD, Liu S, Byars JM, Lidke DS, Lidke KA (2013) Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope. PLoS One 8(5):e64320. doi:10.1371/journal.pone.0064320

    PubMed Central  PubMed  Google Scholar 

  48. Yang W, Gelles J, Musser SM (2004) Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci USA 101(35):12887–12892. doi:10.1073/pnas.0403675101

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Yang W, Musser SM (2006) Visualizing single molecules interacting with nuclear pore complexes by narrow-field epifluorescence microscopy. Methods 39(4):316–328. doi:10.1016/j.ymeth.2006.06.002

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Cella Zanacchi F, Lavagnino Z, Perrone Donnorso M, Del Bue A, Furia L, Faretta M, Diaspro A (2011) Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8(12):1047–1049. doi:10.1038/nmeth.1744

    PubMed  Google Scholar 

  51. Ritter JG, Veith R, Veenendaal A, Siebrasse JP, Kubitscheck U (2010) Light sheet microscopy for single molecule tracking in living tissue. PLoS One 5(7):e11639. doi:10.1371/journal.pone.0011639

    PubMed Central  PubMed  Google Scholar 

  52. Gebhardt JC, Suter DM, Roy R, Zhao ZW, Chapman AR, Basu S, Maniatis T, Xie XS (2013) Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods 10(5):421–426. doi:10.1038/nmeth.2411

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Zhao ZW, Roy R, Gebhardt JC, Suter DM, Chapman AR, Xie XS (2014) Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy. Proc Natl Acad Sci USA 111(2):681–686. doi:10.1073/pnas.1318496111

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81(4):2378–2388. doi:10.1016/S0006-3495(01)75884-5

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783. doi:10.1016/S0006-3495(02)75618-X

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Mashanov GI, Molloy JE (2007) Automatic detection of single fluorophores in live cells. Biophys J 92(6):2199–2211. doi:10.1529/biophysj.106.081117

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Kural C, Kim H, Syed S, Goshima G, Gelfand VI, Selvin PR (2005) Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science 308(5727):1469–1472. doi:10.1126/science.1108408

    CAS  PubMed  Google Scholar 

  58. Okten Z, Churchman LS, Rock RS, Spudich JA (2004) Myosin VI walks hand-over-hand along actin. Nat Struct Mol Biol 11(9):884–887. doi:10.1038/nsmb815

    PubMed  Google Scholar 

  59. Yildiz A, Park H, Safer D, Yang Z, Chen LQ, Selvin PR, Sweeney HL (2004) Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. J Biol Chem 279(36):37223–37226. doi:10.1074/jbc.C400252200

    CAS  PubMed  Google Scholar 

  60. Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303(5658):676–678. doi:10.1126/science.1093753

    CAS  PubMed  Google Scholar 

  61. DeWitt MA, Chang AY, Combs PA, Yildiz A (2012) Cytoplasmic dynein moves through uncoordinated stepping of the AAA + ring domains. Science 335(6065):221–225. doi:10.1126/science.1215804

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Qiu W, Derr ND, Goodman BS, Villa E, Wu D, Shih W, Reck-Peterson SL (2012) Dynein achieves processive motion using both stochastic and coordinated stepping. Nat Struct Mol Biol 19(2):193–200. doi:10.1038/nsmb.2205

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Warshaw DM, Kennedy GG, Work SS, Krementsova EB, Beck S, Trybus KM (2005) Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys J 88(5):L30–32. doi:10.1529/biophysj.105.061903

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Nishikawa S, Arimoto I, Ikezaki K, Sugawa M, Ueno H, Komori T, Iwane AH, Yanagida T (2010) Switch between large hand-over-hand and small inchworm-like steps in myosin VI. Cell 142(6):879–888. doi:10.1016/j.cell.2010.08.033

    CAS  PubMed  Google Scholar 

  65. Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H, Yoshida M, Kinosita K Jr (2007) Coupling of rotation and catalysis in F(1)-ATPase revealed by single-molecule imaging and manipulation. Cell 130(2):309–321. doi:10.1016/j.cell.2007.05.020

    CAS  PubMed  Google Scholar 

  66. Komori T, Nishikawa S, Ariga T, Iwane AH, Yanagida T (2009) Simultaneous measurement of nucleotide occupancy and mechanical displacement in myosin-V, a processive molecular motor. Biophys J 96(1):L04–06. doi:10.1016/j.bpj.2008.09.031

    CAS  PubMed  Google Scholar 

  67. van Oijen AM (2011) Single-molecule approaches to characterizing kinetics of biomolecular interactions. Curr Opin Biotechnol 22(1):75–80. doi:10.1016/j.copbio.2010.10.002

    PubMed  Google Scholar 

  68. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299(5607):682–686. doi:10.1126/science.1079700

    CAS  PubMed  Google Scholar 

  69. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138. doi:10.1126/science.1162986

    CAS  PubMed  Google Scholar 

  70. Uemura S, Aitken CE, Korlach J, Flusberg BA, Turner SW, Puglisi JD (2010) Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464(7291):1012–1017. doi:10.1038/nature08925

    CAS  PubMed  Google Scholar 

  71. Elting MW, Leslie SR, Churchman LS, Korlach J, McFaul CM, Leith JS, Levene MJ, Cohen AE, Spudich JA (2013) Single-molecule fluorescence imaging of processive myosin with enhanced background suppression using linear zero-mode waveguides (ZMWs) and convex lens induced confinement (CLIC). Opt Express 21(1):1189–1202. doi:10.1364/OE.21.001189

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Loveland AB, Habuchi S, Walter JC, van Oijen AM (2012) A general approach to break the concentration barrier in single-molecule imaging. Nat Methods 9(10):987–992. doi:10.1038/nmeth.2174

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Courty S, Luccardini C, Bellaiche Y, Cappello G, Dahan M (2006) Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett 6(7):1491–1495. doi:10.1021/nl060921t

    CAS  PubMed  Google Scholar 

  74. Nelson SR, Ali MY, Trybus KM, Warshaw DM (2009) Random walk of processive, quantum dot-labeled myosin Va molecules within the actin cortex of COS-7 cells. Biophys J 97(2):509–518. doi:10.1016/j.bpj.2009.04.052

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Pierobon P, Achouri S, Courty S, Dunn AR, Spudich JA, Dahan M, Cappello G (2009) Velocity, processivity, and individual steps of single myosin V molecules in live cells. Biophys J 96(10):4268–4275. doi:10.1016/j.bpj.2009.02.045

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Kao HP, Verkman AS (1994) Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys J 67(3):1291–1300. doi:10.1016/S0006-3495(94)80601-0

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Toprak E, Balci H, Blehm BH, Selvin PR (2007) Three-dimensional particle tracking via bifocal imaging. Nano Lett 7(7):2043–2045. doi:10.1021/nl0709120

    CAS  PubMed  Google Scholar 

  78. Ram S, Kim D, Ober RJ, Ward ES (2012) 3D single molecule tracking with multifocal plane microscopy reveals rapid intercellular transferrin transport at epithelial cell barriers. Biophys J 103(7):1594–1603. doi:10.1016/j.bpj.2012.08.054

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Douglass AD, Vale RD (2008) Single-molecule imaging of fluorescent proteins. Methods Cell Biol 85:113–125. doi:10.1016/S0091-679X(08)85006-6

    CAS  PubMed  Google Scholar 

  80. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. doi:10.1126/science.1127344

    CAS  PubMed  Google Scholar 

  81. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. doi:10.1038/nmeth929

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5(2):155–157. doi:10.1038/nmeth.1176

    CAS  PubMed  Google Scholar 

  83. Subach FV, Patterson GH, Renz M, Lippincott-Schwartz J, Verkhusha VV (2010) Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J Am Chem Soc 132(18):6481–6491. doi:10.1021/ja100906g

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Jones SA, Shim SH, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8(6):499–508. doi:10.1038/nmeth.1605

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Biteen JS, Thompson MA, Tselentis NK, Bowman GR, Shapiro L, Moerner WE (2008) Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods 5(11):947–949. doi:10.1038/nmeth.1258

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5(5):417–423. doi:10.1038/nmeth.1202

    CAS  PubMed  Google Scholar 

  87. Uphoff S, Reyes-Lamothe R, Garza de Leon F, Sherratt DJ, Kapanidis AN (2013) Single-molecule DNA repair in live bacteria. Proc Natl Acad Sci USA 110(20):8063–8068. doi:10.1073/pnas.1301804110

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Lee SH, Shin JY, Lee A, Bustamante C (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc Natl Acad Sci USA 109(43):17436–17441. doi:10.1073/pnas.1215175109

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA 93(13):6264–6268

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6):507–516. doi:10.1038/nmeth.1208

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Myong S, Rasnik I, Joo C, Lohman TM, Ha T (2005) Repetitive shuttling of a motor protein on DNA. Nature 437(7063):1321–1325. doi:10.1038/nature04049

    CAS  PubMed  Google Scholar 

  92. Myong S, Bruno MM, Pyle AM, Ha T (2007) Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase. Science 317(5837):513–516. doi:10.1126/science.1144130

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Lee JB, Hite RK, Hamdan SM, Xie XS, Richardson CC, van Oijen AM (2006) DNA primase acts as a molecular brake in DNA replication. Nature 439(7076):621–624. doi:10.1038/nature04317

    CAS  PubMed  Google Scholar 

  94. Bianco PR, Brewer LR, Corzett M, Balhorn R, Yeh Y, Kowalczykowski SC, Baskin RJ (2001) Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409(6818):374–378. doi:10.1038/35053131

    CAS  PubMed  Google Scholar 

  95. Handa N, Bianco PR, Baskin RJ, Kowalczykowski SC (2005) Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after chi recognition. Mol Cell 17(5):745–750. doi:10.1016/j.molcel.2005.02.011

    CAS  PubMed  Google Scholar 

  96. Fili N, Mashanov GI, Toseland CP, Batters C, Wallace MI, Yeeles JT, Dillingham MS, Webb MR, Molloy JE (2010) Visualizing helicases unwinding DNA at the single molecule level. Nucleic Acids Res 38(13):4448–4457. doi:10.1093/nar/gkq173

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Lee G, Bratkowski MA, Ding F, Ke A, Ha T (2012) Elastic coupling between RNA degradation and unwinding by an exoribonuclease. Science 336(6089):1726–1729. doi:10.1126/science.1216848

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Tang GQ, Roy R, Bandwar RP, Ha T, Patel SS (2009) Real-time observation of the transition from transcription initiation to elongation of the RNA polymerase. Proc Natl Acad Sci USA 106(52):22175–22180. doi:10.1073/pnas.0906979106

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Kapanidis AN, Laurence TA, Lee NK, Margeat E, Kong X, Weiss S (2005) Alternating-laser excitation of single molecules. Acc Chem Res 38(7):523–533. doi:10.1021/ar0401348

    CAS  PubMed  Google Scholar 

  100. Lee NK, Kapanidis AN, Koh HR, Korlann Y, Ho SO, Kim Y, Gassman N, Kim SK, Weiss S (2007) Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. Biophys J 92(1):303–312. doi:10.1529/biophysj.106.093211

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Hohng S, Zhou R, Nahas MK, Yu J, Schulten K, Lilley DM, Ha T (2007) Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction. Science 318(5848):279–283. doi:10.1126/science.1146113

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Zhou R, Kozlov AG, Roy R, Zhang J, Korolev S, Lohman TM, Ha T (2011) SSB functions as a sliding platform that migrates on DNA via reptation. Cell 146(2):222–232. doi:10.1016/j.cell.2011.06.036

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Forkey JN, Quinlan ME, Shaw MA, Corrie JE, Goldman YE (2003) Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422(6930):399–404. doi:10.1038/nature01529

    CAS  PubMed  Google Scholar 

  104. Beausang JF, Shroder DY, Nelson PC, Goldman YE (2013) Tilting and wobble of myosin V by high-speed single-molecule polarized fluorescence microscopy. Biophys J 104(6):1263–1273. doi:10.1016/j.bpj.2013.01.057

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Hamdan SM, Loparo JJ, Takahashi M, Richardson CC, van Oijen AM (2009) Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature 457(7227):336–339. doi:10.1038/nature07512

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Spies M, Bianco PR, Dillingham MS, Handa N, Baskin RJ, Kowalczykowski SC (2003) A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase. Cell 114(5):647–654

    CAS  PubMed  Google Scholar 

  107. Greene EC, Wind S, Fazio T, Gorman J, Visnapuu ML (2010) DNA curtains for high-throughput single-molecule optical imaging. Methods Enzymol 472:293–315. doi:10.1016/S0076-6879(10)72006-1

    CAS  PubMed  Google Scholar 

  108. Gorman J, Fazio T, Wang F, Wind S, Greene EC (2010) Nanofabricated racks of aligned and anchored DNA substrates for single-molecule imaging. Langmuir 26(2):1372–1379. doi:10.1021/la902443e

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Gorman J, Plys AJ, Visnapuu ML, Alani E, Greene EC (2010) Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice. Nat Struct Mol Biol 17(8):932–938. doi:10.1038/nsmb.1858

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Duzdevich D, Greene EC (2013) Towards physiological complexity with in vitro single-molecule biophysics. Philos Trans R Soc Lond Ser B Biol Sci 368(1611):20120271. doi:10.1098/rstb.2012.0271

    Google Scholar 

  111. Visnapuu ML, Greene EC (2009) Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition. Nat Struct Mol Biol 16(10):1056–1062. doi:10.1038/nsmb.1655

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Gorman J, Chowdhury A, Surtees JA, Shimada J, Reichman DR, Alani E, Greene EC (2007) Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6. Mol Cell 28(3):359–370. doi:10.1016/j.molcel.2007.09.008

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Prasad TK, Robertson RB, Visnapuu ML, Chi P, Sung P, Greene EC (2007) A DNA-translocating Snf2 molecular motor: Saccharomyces cerevisiae Rdh54 displays processive translocation and extrudes DNA loops. J Mol Biol 369(4):940–953. doi:10.1016/j.jmb.2007.04.005

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Finkelstein IJ, Visnapuu ML, Greene EC (2010) Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature 468(7326):983–987. doi:10.1038/nature09561

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Chisty LT, Toseland CP, Fili N, Mashanov GI, Dillingham MS, Molloy JE, Webb MR (2013) Monomeric PcrA helicase processively unwinds plasmid lengths of DNA in the presence of the initiator protein RepD. Nucleic Acids Res 41(9):5010–5023. doi:10.1093/nar/gkt194

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Nitzsche B, Bormuth V, Brauer C, Howard J, Ionov L, Kerssemakers J, Korten T, Leduc C, Ruhnow F, Diez S (2010) Studying kinesin motors by optical 3D-nanometry in gliding motility assays. Methods Cell Biol 95:247–271. doi:10.1016/S0091-679X(10)95014-0

    CAS  PubMed  Google Scholar 

  117. Leduc C, Ruhnow F, Howard J, Diez S (2007) Detection of fractional steps in cargo movement by the collective operation of kinesin-1 motors. Proc Natl Acad Sci USA 104(26):10847–10852. doi:10.1073/pnas.0701864104

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Howard J, Hudspeth AJ, Vale RD (1989) Movement of microtubules by single kinesin molecules. Nature 342(6246):154–158. doi:10.1038/342154a0

    CAS  PubMed  Google Scholar 

  119. Korten T, Nitzsche B, Gell C, Ruhnow F, Leduc C, Diez S (2011) Fluorescence imaging of single Kinesin motors on immobilized microtubules. Methods Mol Biol 783:121–137. doi:10.1007/978-1-61779-282-3_7

    CAS  PubMed  Google Scholar 

  120. Pierce DW, Hom-Booher N, Vale RD (1997) Imaging individual green fluorescent proteins. Nature 388(6640):338. doi:10.1038/41009

    CAS  PubMed  Google Scholar 

  121. Vale RD, Funatsu T, Pierce DW, Romberg L, Harada Y, Yanagida T (1996) Direct observation of single kinesin molecules moving along microtubules. Nature 380(6573):451–453. doi:10.1038/380451a0

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Helenius J, Brouhard G, Kalaidzidis Y, Diez S, Howard J (2006) The depolymerising kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441(7089):115–119. doi:10.1038/nature04736

    CAS  PubMed  Google Scholar 

  123. Varga V, Helenius J, Tanaka K, Hyman AA, Tanaka TU, Howard J (2006) Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat Cell Biol 8(9):957–962. doi:10.1038/ncb1462

    CAS  PubMed  Google Scholar 

  124. Dixit R, Ross JL, Goldman YE, Holzbaur EL (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319(5866):1086–1089. doi:10.1126/science.1152993

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Korten T, Diez S (2008) Setting up roadblocks for kinesin-1: mechanism for the selective speed control of cargo carrying microtubules. Lab Chip 8(9):1441–1447. doi:10.1039/b803585g

    CAS  PubMed  Google Scholar 

  126. Telley IA, Bieling P, Surrey T (2009) Obstacles on the microtubule reduce the processivity of Kinesin-1 in a minimal in vitro system and in cell extract. Biophys J 96(8):3341–3353. doi:10.1016/j.bpj.2009.01.015

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Reck-Peterson SL, Yildiz A, Carter AP, Gennerich A, Zhang N, Vale RD (2006) Single-molecule analysis of dynein processivity and stepping behavior. Cell 126(2):335–348. doi:10.1016/j.cell.2006.05.046

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Brawley CM, Rock RS (2009) Unconventional myosin traffic in cells reveals a selective actin cytoskeleton. Proc Natl Acad Sci USA 106(24):9685–9690. doi:10.1073/pnas.0810451106

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Sivaramakrishnan S, Spudich JA (2009) Coupled myosin VI motors facilitate unidirectional movement on an F-actin network. J Cell Biol 187(1):53–60. doi:10.1083/jcb.200906133

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Heuser J (2000) The production of ‘cell cortices’ for light and electron microscopy. Traffic 1(7):545–552

    CAS  PubMed  Google Scholar 

  131. Moore MS, Mahaffey DT, Brodsky FM, Anderson RG (1987) Assembly of clathrin-coated pits onto purified plasma membranes. Science 236(4801):558–563

    CAS  PubMed  Google Scholar 

  132. Clarke M, Schatten G, Mazia D, Spudich JA (1975) Visualization of actin fibers associated with the cell membrane in amoebae of Dictyostelium discoideum. Proc Natl Acad Sci USA 72(5):1758–1762

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Heuser JE, Anderson RG (1989) Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J Cell Biol 108(2):389–400

    CAS  PubMed  Google Scholar 

  134. Mahaffey DT, Moore MS, Brodsky FM, Anderson RG (1989) Coat proteins isolated from clathrin coated vesicles can assemble into coated pits. J Cell Biol 108(5):1615–1624

    CAS  PubMed  Google Scholar 

  135. Mahaffey DT, Peeler JS, Brodsky FM, Anderson RG (1990) Clathrin-coated pits contain an integral membrane protein that binds the AP-2 subunit with high affinity. J Biol Chem 265(27):16514–16520

    CAS  PubMed  Google Scholar 

  136. Wu M, De Camilli P (2012) Supported native plasma membranes as platforms for the reconstitution and visualisation of endocytic membrane budding. Methods Cell Biol 108:3–18. doi:10.1016/B978-0-12-386487-1.00001-8

    CAS  PubMed  Google Scholar 

  137. Wu M, Huang B, Graham M, Raimondi A, Heuser JE, Zhuang X, De Camilli P (2010) Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system. Nat Cell Biol 12(9):902–908. doi:10.1038/ncb2094

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Fili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Fili, N. (2014). Single-Molecule and Single-Particle Imaging of Molecular Motors In Vitro and In Vivo. In: Toseland, C., Fili, N. (eds) Fluorescent Methods for Molecular Motors. Experientia Supplementum, vol 105. Springer, Basel. https://doi.org/10.1007/978-3-0348-0856-9_7

Download citation

Publish with us

Policies and ethics