Skip to main content

Using Fluorescence to Study Actomyosin in Yeasts

  • Chapter
  • First Online:
Book cover Fluorescent Methods for Molecular Motors

Part of the book series: Experientia Supplementum ((EXS,volume 105))

Abstract

This year marks the 30th anniversary of the first description of the cellular distribution of actin within a yeast cell. Since then advances in both molecular genetics and imaging technologies have ensured research within these simple model organisms has blazed a trail in the field of actomyosin research. Many yeast proteins and their functions are functionally conserved in human cells. This, combined with experimental speed, minimal cost and ease of use make the yeasts extremely attractive model organisms for researching diverse cellular processes, including those involving actomyosin. In this chapter, current state-of-the-art fluorescence methodologies being applied to yeast actomyosin research, together with an honest appraisal of their limitations, such as the pitfalls that should be considered when fluorescently labelling proteins interacting within a dynamic cytoskeleton, will be discussed. Papers describing the established techniques developed for yeast localisation studies will be highlighted. This will provide the reader with an informed overview of the arsenal of imaging techniques available to the yeast actomyosin researcher and encourage them to consider novel ways these simple unicellular eukaryotes could be used to address their own research questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABP:

Actin-binding protein

Arp:

Actin-related protein

CAR:

Cytokinetic actomyosin ring

CCD:

Charge couple device

CMOS:

Complementary metal oxide semiconductor

emCCD:

Electron multiplying charge couple device

FP:

Fluorescent protein

Tm:

Tropomyosin

References

  1. Adams AE, Pringle JR (1984) Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol 98(3):934–945

    Article  CAS  PubMed  Google Scholar 

  2. Marks J, Hyams JS (1985) Localisation of F-actin through the cell-division cycle of Schizosaccharomyces pombe. Eur J Cell Biol 39:27–32

    Google Scholar 

  3. Anderson JM, Soll DR (1986) Differences in actin localization during bud and hypha formation in the yeast Candida albicans. J Gen Microbiol 132(7):2035–2047

    CAS  PubMed  Google Scholar 

  4. Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105(4):1473–1478

    Article  CAS  PubMed  Google Scholar 

  5. Mishra M, Huang J, Balasubramanian MK (2014) The yeast actin cytoskeleton. FEMS Microbiol Rev 38(2):213–227

    Article  CAS  PubMed  Google Scholar 

  6. Michelot A, Drubin DG (2011) Building distinct actin filament networks in a common cytoplasm. Curr Biol 21(14):R560–R569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kovar DR, Sirotkin V, Lord M (2010) Three’s company: the fission yeast actin cytoskeleton. Trends Cell Biol 21(3):177–187

    Article  PubMed Central  PubMed  Google Scholar 

  8. Nurse P, Thuriaux P, Nasmyth K (1976) Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 146(2):167–178

    Article  CAS  PubMed  Google Scholar 

  9. Balasubramanian MK, Helfman DM, Hemmingsen SM (1992) A new tropomyosin essential for cytokinesis in the fission yeast S. pombe. Nature 360(6399):84–87

    Article  CAS  PubMed  Google Scholar 

  10. Balasubramanian MK, Hirani BR, Burke JD, Gould KL (1994) The Schizosaccharomyces pombe cdc3+ gene encodes a profilin essential for cytokinesis. J Cell Biol 125(6):1289–1301

    Article  CAS  PubMed  Google Scholar 

  11. McCollum D, Balasubramanian MK, Pelcher LE, Hemmingsen SM, Gould KL (1995) Schizosaccharomyces pombe cdc4+ gene encodes a novel EF-hand protein essential for cytokinesis. J Cell Biol 130(3):651–660

    Article  CAS  PubMed  Google Scholar 

  12. Chang F, Drubin D, Nurse P (1997) cdc12p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profilin. J Cell Biol 137(1):169–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. MacIver FH, Glover DM, Hagan IM (2003) A ‘marker switch’ approach for targeted mutagenesis of genes in Schizosaccharomyces pombe. Yeast 20(7):587–594

    Article  CAS  PubMed  Google Scholar 

  14. Cullen CF, May KM, Hagan IM, Glover DM, Ohkura H (2000) A new genetic method for isolating functionally interacting genes: high plo1(+)-dependent mutants and their suppressors define genes in mitotic and septation pathways in fission yeast. Genetics 155(4):1521–1534

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M, Yoo HS, Duhig T, Nam M, Palmer G, Han S, Jeffery L, Baek ST, Lee H, Shim YS, Lee M, Kim L, Heo KS, Noh EJ, Lee AR, Jang YJ, Chung KS, Choi SJ, Park JY, Park Y, Kim HM, Park SK, Park HJ, Kang EJ, Kim HB, Kang HS, Park HM, Kim K, Song K, Song KB, Nurse P, Hoe KL (2010) Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 28(6):617–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M’Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429):901–906

    Article  CAS  PubMed  Google Scholar 

  17. Ayscough KR, Stryker J, Pokala N, Sanders M, Crews P, Drubin DG (1997) High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J Cell Biol 137(2):399–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Petersen J, Nielsen O, Egel R, Hagan IM (1998) F-actin distribution and function during sexual differentiation in Schizosaccharomyces pombe. J Cell Sci 111(Pt 7):867–876

    CAS  PubMed  Google Scholar 

  19. Kanbe T, Akashi T, Tanaka K (1993) Effect of cytochalasin A on actin distribution in the fission yeast Schizosaccharomyces pombe studied by fluorescent and electron microscopy. Protoplasma 176(1–2):24–32

    Article  CAS  Google Scholar 

  20. Riveline D, Nurse P (2009) ‘Injecting’ yeast. Nat Methods 6(7):513–514

    Article  CAS  PubMed  Google Scholar 

  21. May KM, Wheatley SP, Amin V, Hyams JS (1998) The myosin ATPase inhibitor 2,3-butanedione-2-monoxime (BDM) inhibits tip growth and cytokinesis in the fission yeast, Schizosaccharomyces pombe. Cell Motil Cytoskeleton 41(2):117–125

    Article  CAS  PubMed  Google Scholar 

  22. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5(7):605–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hagan IM, Hyams JS (1988) The use of cell division cycle mutants to investigate the control of microtubule distribution in the fission yeast Schizosaccharomyces pombe. J Cell Sci 89(Pt 3):343–357

    PubMed  Google Scholar 

  24. Skoumpla K, Coulton AT, Lehman W, Geeves MA, Mulvihill DP (2007) Acetylation regulates tropomyosin function in the fission yeast Schizosaccharomyces pombe. J Cell Sci 120(9):1635–1645

    Article  CAS  PubMed  Google Scholar 

  25. Naqvi NI, Eng K, Gould KL, Balasubramanian MK (1999) Evidence for F-actin-dependent and -independent mechanisms involved in assembly and stability of the medial actomyosin ring in fission yeast. EMBO J 18(4):854–862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Petersen J, Nielsen O, Egel R, Hagan IM (1998) FH3, a domain found in formins, targets the fission yeast formin Fus1 to the projection tip during conjugation. J Cell Biol 141(5):1217–1228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. McCollum D, Feoktistova A, Morphew M, Balasubramanian M, Gould KL (1996) The Schizosaccharomyces pombe actin-related protein, Arp3, is a component of the cortical actin cytoskeleton and interacts with profilin. EMBO J 15(23):6438–6446

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Grallert A, Hagan IM (2002) Schizosaccharomyces pombe NIMA-related kinase, Fin1, regulates spindle formation and an affinity of Polo for the SPB. EMBO J 21(12):3096–3107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Motegi F, Nakano K, Mabuchi I (2000) Molecular mechanism of myosin-II assembly at the division site in Schizosaccharomyces pombe. J Cell Sci 113(Pt 10):1813–1825

    CAS  PubMed  Google Scholar 

  30. Pelham RJ, Chang F (2002) Actin dynamics in the contractile ring during cytokinesis in fission yeast. Nature 419(6902):82–86

    Article  CAS  PubMed  Google Scholar 

  31. Arai R, Mabuchi I (2002) F-actin ring formation and the role of F-actin cables in the fission yeast Schizosaccharomyces pombe. J Cell Sci 115(Pt 5):887–898

    CAS  PubMed  Google Scholar 

  32. Lin JJ (1981) Monoclonal antibodies against myofibrillar components of rat skeletal muscle decorate the intermediate filaments of cultured cells. Proc Natl Acad Sci USA 78(4):2335–2339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Winter D, Lechler T, Li R (1999) Activation of the yeast Arp2/3 complex by Bee1p, a WASP-family protein. Curr Biol 9(9):501–504

    Article  CAS  PubMed  Google Scholar 

  34. Pruyne DW, Schott DH, Bretscher A (1998) Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J Cell Biol 143(7):1931–1945

    Article  CAS  PubMed  Google Scholar 

  35. East DA, Mulvihill DP, Todd M, Bruce IJ (2011) QD-antibody conjugates via carbodiimide-mediated coupling: a detailed study of the variables involved and a possible new mechanism for the coupling reaction under basic aqueous conditions. Langmuir 27(22):13888–13896

    Article  CAS  PubMed  Google Scholar 

  36. Attanapola SL (2009) Analysis of the regulation and function of the fission yeast class I myosin, Myo1. University of Kent, Canterbury

    Google Scholar 

  37. Anderson BL, Boldogh I, Evangelista M, Boone C, Greene LA, Pon LA (1998) The Src homology domain 3 (SH3) of a yeast type I myosin, Myo5p, binds to verprolin and is required for targeting to sites of actin polarization. J Cell Biol 141(6):1357–1370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Watts FZ, Miller DM, Orr E (1985) Identification of myosin heavy chain in Saccharomyces cerevisiae. Nature 316(6023):83–85

    Article  CAS  PubMed  Google Scholar 

  39. Coulton AT, East DA, Galinska-Rakoczy A, Lehman W, Mulvihill DP (2010) The recruitment of acetylated and unacetylated tropomyosin to distinct actin polymers permits the discrete regulation of specific myosins in fission yeast. J Cell Sci 123:3235–3243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bezanilla M, Wilson JM, Pollard TD (2000) Fission yeast myosin-II isoforms assemble into contractile rings at distinct times during mitosis. Curr Biol 10(7):397–400

    Article  CAS  PubMed  Google Scholar 

  41. Schott D, Ho J, Pruyne D, Bretscher A (1999) The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J Cell Biol 147(4):791–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Catlett NL, Duex JE, Tang F, Weisman LS (2000) Two distinct regions in a yeast myosin-V tail domain are required for the movement of different cargoes. J Cell Biol 150(3):513–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Motegi F, Arai R, Mabuchi I (2001) Identification of two type V myosins in fission yeast, one of which functions in polarized cell growth and moves rapidly in the cell. Mol Biol Cell 12(5):1367–1380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Munchow S, Sauter C, Jansen RP (1999) Association of the class V myosin Myo4p with a localised messenger RNA in budding yeast depends on She proteins. J Cell Sci 112(Pt 10):1511–1518

    CAS  PubMed  Google Scholar 

  45. Mulvihill DP, Petersen J, Ohkura H, Glover DM, Hagan IM (1999) Plo1 kinase recruitment to the spindle pole body and its role in cell division in Schizosaccharomyces pombe. Mol Biol Cell 10(8):2771–2785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Bahler J, Wu JQ, Longtine MS, Shah NG, McKenzie A 3rd, Steever AB, Wach A, Philippsen P, Pringle JR (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14(10):943–951

    Article  CAS  PubMed  Google Scholar 

  47. Wach A, Brachat A, Alberti-Segui C, Rebischung C, Philippsen P (1997) Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13(11):1065–1075

    Article  CAS  PubMed  Google Scholar 

  48. Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21(11):947–962

    Article  CAS  PubMed  Google Scholar 

  49. Mulvihill DP, Barretto C, Hyams JS (2001) Localization of fission yeast type II myosin, Myo2, to the cytokinetic actin ring is regulated by phosphorylation of a C-terminal coiled-coil domain and requires a functional septation initiation network. Mol Biol Cell 12(12):4044–4053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Grallert A, Beuter C, Craven RA, Bagley S, Wilks D, Fleig U, Hagan IM (2006) S. pombe CLASP needs dynein, not EB1 or CLIP170, to induce microtubule instability and slows polymerization rates at cell tips in a dynein-dependent manner. Genes Dev 20(17):2421–2436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Snaith HA, Anders A, Samejima I, Sawin KE (2010) New and old reagents for fluorescent protein tagging of microtubules in fission yeast; experimental and critical evaluation. Methods Cell Biol 97:147–172

    Article  CAS  PubMed  Google Scholar 

  52. Chapman S, Faulkner C, Kaiserli E, Garcia-Mata C, Savenkov EI, Roberts AG, Oparka KJ, Christie JM (2008) The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc Natl Acad Sci USA 105(50):20038–20043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Nguyen AW, Daugherty PS (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23(3):355–360

    Article  CAS  PubMed  Google Scholar 

  54. Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22(4):445–449

    Article  CAS  PubMed  Google Scholar 

  55. Wu JQ, Pollard TD (2005) Counting cytokinesis proteins globally and locally in fission yeast. Science 310(5746):310–314

    Article  CAS  PubMed  Google Scholar 

  56. Huckaba TM, Gay AC, Pantalena LF, Yang HC, Pon LA (2004) Live cell imaging of the assembly, disassembly, and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 167(3):519–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Karagiannis J, Bimbo A, Rajagopalan S, Liu J, Balasubramanian MK (2005) The nuclear kinase Lsk1p positively regulates the septation initiation network and promotes the successful completion of cytokinesis in response to perturbation of the actomyosin ring in Schizosaccharomyces pombe. Mol Biol Cell 16(1):358–371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Huang J, Huang Y, Yu H, Subramanian D, Padmanabhan A, Thadani R, Tao Y, Tang X, Wedlich-Soldner R, Balasubramanian MK (2012) Nonmedially assembled F-actin cables incorporate into the actomyosin ring in fission yeast. J Cell Biol 199(5):831–847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Maundrell K (1993) Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123(1):127–130

    Article  CAS  PubMed  Google Scholar 

  60. Mishra M, Kashiwazaki J, Takagi T, Srinivasan R, Huang Y, Balasubramanian MK, Mabuchi I (2013) In vitro contraction of cytokinetic ring depends on myosin II but not on actin dynamics. Nat Cell Biol 15(7):853–859

    Article  CAS  PubMed  Google Scholar 

  61. Yoshida S, Kono K, Lowery DM, Bartolini S, Yaffe MB, Ohya Y, Pellman D (2006) Polo-like kinase Cdc5 controls the local activation of Rho1 to promote cytokinesis. Science 313(5783):108–111

    Article  CAS  PubMed  Google Scholar 

  62. Drees B, Brown C, Barrell BG, Bretscher A (1995) Tropomyosin is essential in yeast, yet the TPM1 and TPM2 products perform distinct functions. J Cell Biol 128(3):383–392

    Article  CAS  PubMed  Google Scholar 

  63. Huckaba TM, Lipkin T, Pon LA (2006) Roles of type II myosin and a tropomyosin isoform in retrograde actin flow in budding yeast. J Cell Biol 175(6):957–969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Frye J, Klenchin VA, Rayment I (2010) Structure of the tropomyosin overlap complex from chicken smooth muscle: insight into the diversity of N-terminal recognition. Biochemistry 49(23):4908–4920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Greenfield NJ, Huang YJ, Swapna GV, Bhattacharya A, Rapp B, Singh A, Montelione GT, Hitchcock-DeGregori SE (2006) Solution NMR structure of the junction between tropomyosin molecules: implications for actin binding and regulation. J Mol Biol 364(1):80–96

    Article  CAS  PubMed  Google Scholar 

  66. Sirotkin V, Beltzner CC, Marchand JB, Pollard TD (2005) Interactions of WASp, myosin-I, and verprolin with Arp2/3 complex during actin patch assembly in fission yeast. J Cell Biol 170(4):637–648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Nakano K, Mabuchi I (2006) Actin-depolymerizing protein Adf1 is required for formation and maintenance of the contractile ring during cytokinesis in fission yeast. Mol Biol Cell 17(4):1933–1945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Chen Q, Pollard TD (2013) Actin filament severing by cofilin dismantles actin patches and produces mother filaments for new patches. Curr Biol 23(13):1154–1162

    Article  CAS  PubMed  Google Scholar 

  69. Galletta BJ, Chuang DY, Cooper JA (2008) Distinct roles for Arp2/3 regulators in actin assembly and endocytosis. PLoS Biol 6(1):e1

    Article  PubMed Central  PubMed  Google Scholar 

  70. Kaksonen M, Toret CP, Drubin DG (2005) A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123(2):305–320

    Article  CAS  PubMed  Google Scholar 

  71. Alvarez-Tabares I, Grallert A, Ortiz JM, Hagan IM (2007) Schizosaccharomyces pombe protein phosphatase 1 in mitosis, endocytosis and a partnership with Wsh3/Tea4 to control polarised growth. J Cell Sci 120(Pt 20):3589–3601

    Article  CAS  PubMed  Google Scholar 

  72. Evangelista M, Klebl BM, Tong AH, Webb BA, Leeuw T, Leberer E, Whiteway M, Thomas DY, Boone C (2000) A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2/3 complex. J Cell Biol 148(2):353–362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Jonsdottir GA, Li R (2004) Dynamics of yeast Myosin I: evidence for a possible role in scission of endocytic vesicles. Curr Biol 14(17):1604–1609

    Article  CAS  PubMed  Google Scholar 

  74. Bi E, Maddox P, Lew DJ, Salmon ED, McMillan JN, Yeh E, Pringle JR (1998) Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis. J Cell Biol 142(5):1301–1312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Wu JQ, Kuhn JR, Kovar DR, Pollard TD (2003) Spatial and temporal pathway for assembly and constriction of the contractile ring in fission yeast cytokinesis. Dev Cell 5(5):723–734

    Article  CAS  PubMed  Google Scholar 

  76. Karpova TS, Reck-Peterson SL, Elkind NB, Mooseker MS, Novick PJ, Cooper JA (2000) Role of actin and Myo2p in polarized secretion and growth of Saccharomyces cerevisiae. Mol Biol Cell 11(5):1727–1737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Win TZ, Gachet Y, Mulvihill DP, May KM, Hyams JS (2001) Two type V myosins with non-overlapping functions in the fission yeast Schizosaccharomyces pombe: Myo52 is concerned with growth polarity and cytokinesis, Myo51 is a component of the cytokinetic actin ring. J Cell Sci 114(Pt 1):69–79

    CAS  PubMed  Google Scholar 

  78. Doyle A, Martin-Garcia R, Coulton AT, Bagley S, Mulvihill DP (2009) The fission yeast type V myosin Myo51, is a meiotic spindle pole body component, with discrete roles during cell fusion and spore formation. J Cell Sci 122(24):4330–4340

    Article  CAS  PubMed  Google Scholar 

  79. Kruse C, Jaedicke A, Beaudouin J, Bohl F, Ferring D, Guttler T, Ellenberg J, Jansen RP (2002) Ribonucleoprotein-dependent localization of the yeast class V myosin Myo4p. J Cell Biol 159(6):971–982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Lee WL, Bezanilla M, Pollard TD (2000) Fission yeast myosin-I, Myo1p, stimulates actin assembly by Arp2/3 complex and shares functions with WASp. J Cell Biol 151(4):789–800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Bezanilla M, Pollard TD (2000) Myosin-II tails confer unique functions in Schizosaccharomyces pombe: characterization of a novel myosin-II tail. Mol Biol Cell 11(1):79–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Mulvihill DP, Win TZ, Pack TP, Hyams JS (2000) Cytokinesis in fission yeast: a myosin pas de deux. Microsc Res Tech 49(2):152–160

    Article  CAS  PubMed  Google Scholar 

  83. Kliche W, Fujita-Becker S, Kollmar M, Manstein DJ, Kull FJ (2001) Structure of a genetically engineered molecular motor. EMBO J 20(1–2):40–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261(5117):50–58

    Article  CAS  PubMed  Google Scholar 

  85. Bendezu FO, Martin SG (2011) Actin cables and the exocyst form two independent morphogenesis pathways in the fission yeast. Mol Biol Cell 22(1):44–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Lo Presti L, Chang F, Martin SG (2012) Myosin Vs organize actin cables in fission yeast. Mol Biol Cell 23(23):4579–4591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Schott DH, Collins RN, Bretscher A (2002) Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length. J Cell Biol 156(1):35–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Lando D, Endesfelder U, Berger H, Subramanian L, Dunne PD, McColl J, Klenerman D, Carr AM, Sauer M, Allshire RC, Heilemann M, Laue ED (2012) Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast. Open Biol 2(7):120078

    Article  PubMed Central  PubMed  Google Scholar 

  89. Dodgson J, Chessel A, Yamamoto M, Vaggi F, Cox S, Rosten E, Albrecht D, Geymonat M, Csikasz-Nagy A, Sato M, Carazo-Salas RE (2013) Spatial segregation of polarity factors into distinct cortical clusters is required for cell polarity control. Nat Commun 4:1834

    Article  PubMed Central  PubMed  Google Scholar 

  90. Saner N, Karschau J, Natsume T, Gierlinski M, Retkute R, Hawkins M, Nieduszynski CA, Blow JJ, de Moura AP, Tanaka TU (2013) Stochastic association of neighboring replicons creates replication factories in budding yeast. J Cell Biol 202(7):1001–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Lord M, Pollard TD (2004) UCS protein Rng3p activates actin filament gliding by fission yeast myosin-II. J Cell Biol 167(2):315–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Reck-Peterson SL, Tyska MJ, Novick PJ, Mooseker MS (2001) The yeast class V myosins, Myo2p and Myo4p, are nonprocessive actin-based motors. J Cell Biol 153(5):1121–1126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Takaine M, Mabuchi I (2007) Properties of actin from the fission yeast Schizosaccharomyces pombe and interaction with fission yeast profilin. J Biol Chem 282(30):21683–21694

    Article  CAS  PubMed  Google Scholar 

  94. Ti SC, Pollard TD (2011) Purification of actin from fission yeast Schizosaccharomyces pombe and characterization of functional differences from muscle actin. J Biol Chem 286(7):5784–5792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Liu HP, Bretscher A (1989) Purification of tropomyosin from Saccharomyces cerevisiae and identification of related proteins in Schizosaccharomyces and Physarum. Proc Natl Acad Sci USA 86(1):90–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Chen X, Rubenstein PA (1995) A mutation in an ATP-binding loop of Saccharomyces cerevisiae actin (S14A) causes a temperature-sensitive phenotype in vivo and in vitro. J Biol Chem 270(19):11406–11414

    Article  CAS  PubMed  Google Scholar 

  97. Hodges AR, Bookwalter CS, Krementsova EB, Trybus KM (2009) A nonprocessive class V myosin drives cargo processively when a kinesin- related protein is a passenger. Curr Biol 19(24):2121–2125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Hodges AR, Krementsova EB, Bookwalter CS, Fagnant PM, Sladewski TE, Trybus KM (2012) Tropomyosin is essential for processive movement of a class V myosin from budding yeast. Curr Biol 22(15):1410–1416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Clayton JE, Pollard LW, Sckolnick M, Bookwalter CS, Hodges AR, Trybus KM, Lord M (2014) Fission yeast tropomyosin specifies directed transport of myosin-V along actin cables. Mol Biol Cell 25(1):66–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Dan Mulvihill is a Royal Society Industry Fellow. Research within his lab is funded by the Royal Society and the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Mulvihill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Mulvihill, D.P. (2014). Using Fluorescence to Study Actomyosin in Yeasts. In: Toseland, C., Fili, N. (eds) Fluorescent Methods for Molecular Motors. Experientia Supplementum, vol 105. Springer, Basel. https://doi.org/10.1007/978-3-0348-0856-9_13

Download citation

Publish with us

Policies and ethics