Capsaicin as New Orally Applicable Gastroprotective and Therapeutic Drug Alone or in Combination with Nonsteroidal Anti-Inflammatory Drugs in Healthy Human Subjects and in Patients

  • Gyula MózsikEmail author
Part of the Progress in Drug Research book series (PDR, volume 68)


Background: Capsaicin is a specific compound acting on capsaicin-sensitive afferent nerves. Aim: Capsaicin was used to study the different events of human gastrointestinal physiology, pathology, and clinical pharmacology, and possible therapeutic approaches to enhance gastrointestinal mucosal defense in healthy human subjects and in patients with various different gastrointestinal disorders as well as its use with nonsteroidal anti-inflammatory drugs (NSAIDs) in healthy subjects and in patients. Materials and Methods: The observations were carried out in 198 healthy human subjects and in 178 patients with different gastrointestinal (GI) diseases (gastritis, erosions, ulcer, polyps, cancer, inflammatory bowel diseases, colorectal polyps, cancers), and in 69 patients with chronic (Helicobacter pylori positive and negative) gastritis (before and after eradication treatment). The gastric secretory responses and their chemical composition, gastric emptying, sugar loading test, gastric transmucosal potential difference (GTPD) with application of capsaicin alone, after ethanol alone and with capsaicin, indomethacin-induced gastric mucosal microbleeding without and with capsaicin were studied. The immunohistochemical examinations of the capsaicin receptor (TRVP1), calcitonin gene- related peptide (CGRP), and substance P (SP) were carried out in gastrointestinal tract, and especially in patients with chronic gastritis (with and without Helicobacter infection, before and after classical eradication treatment). Classical molecular pharmacological methods were applied to study the drugs inhibiting the gastric basal acid output. Results: Capsaicin decreased the gastric basal output, enhanced the “non-parietal” (buffering) component of gastric secretory responses, and gastric emptying, and the release of glucagon. Capsaicin prevented the indomethacin- and ethanol-induced gastric mucosal damage; meanwhile capsaicin itself enhanced (GTPD). Capsaicin prevented the indomethacin-induced gastric mucosal microbleeding. The expression of TRVP1 and CGRP increased in the gastric mucosa of patients with chronic gastritis (independently of the presence of Helicobacter pylori infection), and the successfully carried out eradication treatment. The human first phase examinations (the application of acetylsalicylic acid (ASA), diclofenac, and naproxen together with capcaicinoids) (given in doses that stimulate capsaicin-sensitive afferent vagal nerves) showed no change in the pharmacokinetic parameters of ASA and diclofenac and the ASA and diclofenac-induced platelet aggregation. Conclusions: Capsaicin represents a new orally applicable gastroprotective agent in healthy human subjects and in patients with different chemical and Helicobacter pylori-induced mucosal damage and in many other diseases requiring treatment with NSAIDs.


Chronic Gastritis Healthy Human Subject Gastric Mucosal Damage Capsaicin Treatment Eradication Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the National Office for Research and Technology, “Pázmány Péter” Programme, RET-II 08/2005 (2005–2008), and by Baross Grant Programme (REG-DG-09-2-2009-0087,CAPSATAB) (2011–2012).


  1. Abdel- Salam OME, Debreceni A, Mózsik Gy (1999) Capsaicin-sensitive afferent sensory nerves in modulating gastric mucosal defense against noxious agents. J Physiol Paris 93:443–454PubMedCrossRefGoogle Scholar
  2. Abdel- Salam OME, Czimmer J, Debreceni A, Mózsik Gy (2001) Gastric mucosal integrity: Gastric mucosal blood flow and microcirculation. An overview. J Physiol Paris 95:105–127PubMedCrossRefGoogle Scholar
  3. Aijoka H, Miyake H, Matsuura N (2000) Effect of FRG-8813, a new-type histamine H2-receptor antagomist, on the recurrence of gastric ulcer healing by drug treatment. Pharmacology 61:83–90CrossRefGoogle Scholar
  4. Aijoka H, Matsuura N, Miyake H (2002) High quality of ulcer healing in rats by lafutidine and new-type histamine H2-receptor antagonist: involvement of capsaicin of sensitive sensory neurons. Inflammopharmacology 10:483–493CrossRefGoogle Scholar
  5. Antal L, Mózsik Gy, Jávor T, Krausz M (1965) The electrolyte content of gastric juice after prolonged atropine treatment. In: Magyar I (ed) Acta tertii conventus medicinae internae hungarici. Gastroenterologia. Akadémiai Kiadó, Budapest, pp 167–169Google Scholar
  6. Bernard BK,Tsubuku S, Kayhara T, Maeda K, Hanada M, Nakamura T, Shirai Y, Nakayaha A, Ueno S, Mihara H (2008) Studies of the toxicological potential of capsaicinoids.X. Safety assessment and pharmacokinetics of capsaicinoids in healthy male vlonteers after single oral ingestion of CH-19 sweet extract. Int J Toxicol 27(Suppl 3):137–147Google Scholar
  7. Boros B, Dornyei Á, Felinger A (2008) Determination of capsaicin and dihydrocapsaicin in dog plasma by liquid chromatography- Mass Spectography (analytical method report). PTE TTK Analitikai Kémiai Tanszék, PécsGoogle Scholar
  8. Buck SH, Burks TF (1986) The neuropharmacology of capsaicin: a review of some recent observation. Pharmacol Rev 38:179–226PubMedGoogle Scholar
  9. Caterina MJ, Schumacher MA, Tominaga H, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824PubMedCrossRefGoogle Scholar
  10. Chaiyasit E, Khovidhunkit W, Wittayertpanya S (2009) Pharmacokinetic and the effect of capsaicin in Capsicum flourescens on decreasing plasma glucose level. J Med Assoc Thai 92:108–113PubMedGoogle Scholar
  11. Csáky TZ (1969) Introduction to general pharmacology. Appleton–century-craft educational division. Meredith Corporation, New York, pp 17–34Google Scholar
  12. Czimmer J, Szabó IL, Szolcsányi J, Mózsik Gy (2013) Capsaicin-sensitive afferentation represents a new mucosal defensive neural pathway system in the gastric mucosa in patients with chronic gastritis. In: Mozsik Gy (ed) Current topics in gastritis–2012. INTECH Publishers, Rijeka, pp 61–75Google Scholar
  13. Debreceni A, Abdel-Salam OME, Figler M, Juricskay I, Szolcsányi J, Mózsik Gy (1999) Capsaicin increases gastric emptying rate in healthy human subjects measured by 13C-labeled octanoid acid breath test. J Physiol Paris 93:455–460PubMedCrossRefGoogle Scholar
  14. Dömötör A, Zs Peidl, Vincze Á, Hunyady B, Szolcsányi J, Gy Szekeres, Mózsik Gy (2005) Immunohistochemical distribution of vanilloid receptor, calcitonin- gene related peptide and substance P in gastrointestinal mucosa of patients with different gastrointestinal disorders. Inflammopharmacology 13:161–177PubMedCrossRefGoogle Scholar
  15. Dömötör A, Kereskay L, Gy Szekeres, Hunyady B, Szolcsányi J, Mózsik Gy (2006a) Participation of capsaicin sensitive afferent nerves in the gastric mucosa of patients with helicobacter pylori-positive or –negative chronic gastritis. Dig Dis Sci 52:411–417PubMedCrossRefGoogle Scholar
  16. Dömötör A, Szolcsányi J, Mózsik Gy (2006b) Capsaicin and glucose absorption and utilization in healthy human subjects. Eur J Pharmacol 534:280–283PubMedCrossRefGoogle Scholar
  17. Fisher MA, Hunt JN (1976) A sensitive method for measuring haemoglobin in the gastric juice. Digestion 14:409–414PubMedCrossRefGoogle Scholar
  18. Gabella G, Pease H (1973) Number of axons in the abdominal vagus of the rat. Brain Res 58:465–469PubMedCrossRefGoogle Scholar
  19. Grijalva CV, Novin D (1990) The role of hypothalamus and dorsal vagal complex in gastrointestinal function an pathophysiology. Ann N Y Acad Sci 597:207–221PubMedCrossRefGoogle Scholar
  20. Hollander F (1934) The component of gastric secretion. Am J Dig Dis Sci 1:319–329CrossRefGoogle Scholar
  21. Holzer P (1998) Neural emergency system in the stomachs. Gastroenterology 114:823–839PubMedCrossRefGoogle Scholar
  22. Holzer P (1999) Capsaicin cellular targets. Mechanisms of action, as selectivity for thin sensory neurons. Phamacol Rev 43:143–201Google Scholar
  23. Holzer P (2013) Transient receptor potential (TRP) channels as drug targets for disesases of the gastrointestional system. Pharmacol Ther 131: 142–170Google Scholar
  24. Holzer P, Lippe IL (1988) Stimulation of afferent nerve endings by intragastric capsaicin against ethanol-induced damage of gastric mucosa. Neuroscinece 27:981–987Google Scholar
  25. Holzer P, Sametz W (1986) Gastric mucosal protection against ulcerogenic factors in the rat mediated by capsaicin-sensitive afferent neurones. Gastroenterology 91:975–981Google Scholar
  26. Hossenbocus A, Fitzpatrick P, Colin-Jones DG (1975) Measurement of gastric potential difference at endoscopy. Gut 14:410–415Google Scholar
  27. Inui T, Kinoshita J, Yamahuchi A, Yamatani T, Chiba T (1991) Linkage between capsaicin-stimulated calcitonin gene-related peptide and somatostatin release in the rat stomach. Am J Physiol 261:G770–G774PubMedGoogle Scholar
  28. Jancsó N, Jancsó- Gábor A, Szolcsányi J (1967) Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Brit J Pharmacol 31:138–151PubMedCentralPubMedGoogle Scholar
  29. Jancsó N, Jancsó- Gábor A, Szolcsányi J (1968) The role of sensory nerves endings in the neurogen inflammation induced in human skin and in the eye and paw of the rat. Brit J Pharmacol 33:32–41PubMedCentralPubMedGoogle Scholar
  30. Jancsó-Gábor A, Szolcsányi J, Jancsó N (1970) Irreversible impairment of the irregulation induced by capsaicin and similar pungent substances in rat and guinea-pigs. J Physiol London 206:495–507PubMedCentralPubMedGoogle Scholar
  31. Karádi O, Mózsik Gy (2000) Surgical and Chemical Vagotomy on the Gastrointestinal Mucosal Defense. Akadémiai Kiadó, BudapestGoogle Scholar
  32. Kawai S, Nishida S, Kato M, Furumaya Y, Okamoto R, Koshino T, Mizushima Y (1998) Comparison of cyclooxygenase-1 and -2 inhibitory activities of various nonsteroidal anti-inflammatory drugs using human platelets and synovial cells. Eur J Pharmacol 347:87–94PubMedCrossRefGoogle Scholar
  33. Lakner L, Dömötör A, Cs Tóth, Szabo IL, Mecker Á, Hajós R, Kereskay L, Gy Szekeres, Döbrönte Z, Mózsik Gy (2011) Capsaicin-sensitive afferentation represents an indifferent defensive pathway from eradication in patients with helicobacter pylori positive gastritis. World J Gastrointest Pharmacol Ther 2:36–41PubMedCentralPubMedCrossRefGoogle Scholar
  34. Marfertheimer P, Megraud F, 0’Morain C, Bazzoli F, El-Omar E, Graham D, Hunt R, Rokkas T, Vakil N, Kuipers EJ (2007) Current concept in the management of Helicobacter pylori infection: the Maastricht III consensus report. Gut 56: 772–781Google Scholar
  35. Mózsik Gy (2006) Molecular pharmacology and biochemistry of gastroduodenal mucosal damage and protection. In: Mózsik Gy (ed) Discoveries in gastroenterology: from basic research to clinical perspectives (1960–2005). Akadémiai Kiadó, Budapest, pp 139–224Google Scholar
  36. Mózsik Gy (2010) Gastric cytoprotection 30 years after its discovery by André Robert: a personal perspective. Inflammopharmacology 18:209–221PubMedCrossRefGoogle Scholar
  37. Mózsik Gy, Jávor T, Dobi S (1965) Clinical-pharmaological analysis of long term parasympatholytic treatment. In: Magyar I (ed) Acta tertii conventus medicinae internae Hungarici. Gastroenterologia. Akadémiai Kiadó, Budapest, pp 709–715Google Scholar
  38. Mózsik Gy, Abdel-Salam OME, Szolcsányi J (1997) Capsaicin-sensitive afferent nerves in gastric mucosal damage and protection. Akadémiai Kiadó, BudapestGoogle Scholar
  39. Mózsik Gy, Sarlos P, Racz I, Szolcsányi J (2003) Evidence for the direct protective effect of capsaicin in human healthy subjects. Gastroenterology 124(Suppl 1):A-454Google Scholar
  40. Mózsik Gy, Belágyi J, Szolcsányi J, Pár G, Pár A, Rumi Gy, Rácz I (2004a) Capsaicin-sensitive afferent nerves and gastric mucosal protection on human healthy subjects. A critical overview. In: Takeuchi K, Mozsik Gy (eds) Mediators in gastrointestinal protection and repair. Research Signpost, Kerala, pp 43–62Google Scholar
  41. Mózsik Gy, Pár A, Pár G, Juricskay I, Figler M, Szolcsányi J (2004a) Insight into the molecular pharmacology to drugs acting on the afferent and efferent fibres of vagal nerve in the gastric mucosal protection. In: Sikirič P, Seiwerth P, Mózsik Gy, Arakawa T, Takeuchi K (eds) Proceedings of the 11th international conference on ulcer research. Monduzzi, Bologna, pp 163–168Google Scholar
  42. Mózsik Gy, Past T, Perjési P, Szolcsányi J (2008) Determination of capsaicin and dihydrocapsaicin content of dog’s plasma by HPLC-FLD method. In: Mózsik Gy, Past T, Pejési P, Szolcsány J (eds) Original reports on toxicology of capsaicin.VII. 8 day oral tocicity study of test item capsaicin natural USP 37 in beagle dogs (final report). LAB International research Centre Hungary Ltd. Veszprém, Hungary by the date of final repot 13 June 2008. Study Code: 07/496–100 K, pp 1–35 text and 190 pages in Appendices (Appendix 2.11) pp 1–37Google Scholar
  43. Mózsik Gy, Szabó IL,Dömötör A (2011b) Approach to role of capsaicin-sensitive afferent nerves in the development and healing in patients with chronic gastritis. In: Tonito P (ed) Gastritis and gastric cancer. New Insights in gastroprotection, diagnosis and treatments. INTECH Publishers, Rijeka, pp 25–46Google Scholar
  44. Mózsik Gy, Szabó IL, Czimmer J (2014) Vulnerable points of the Helicobacter pylori story—based on animal and human observations (19752012). In: Buzas Gy (ed) Helicobacter pylori—a Worldwide Perspective 2013. Bentham Science Publishers, Oak Park (in press)Google Scholar
  45. Mózsik Gy, Jávor T (1969b) Development of drug cross-tolerance in patients treated chronically with atropine. Eur J Pharmacol 6:169–174CrossRefGoogle Scholar
  46. Mózsik Gy, Jávor T, Dobi S, Petrássy K, Szabó A (1966) Development of “pharmacological denervation phenomenon” in patients treated with atropine. Eur J Pharmacol 1:391–395CrossRefGoogle Scholar
  47. Mózsik Gy, Berstad A, Myren J, Setekleiv J (1969a) Absorption and urinary excretion oxyphencyclamin HCI in patients before and after a prolonged oxyphencyclimide treatment. Med Exp 19:10–16Google Scholar
  48. Mózsik Gy, Moron F, Jávor T (1982) Cellular mechanisms of the development of gastric mucosal damage and of gastro protection induced by prostacyclin in rats. A pharmacological study. Prostagland Leukot Med 9:71–84CrossRefGoogle Scholar
  49. Mózsik Gy, Hunyady B, Garamszegi M, Németh A, Pakodi F, Vincze A (1994) Dynamism of cytoprotective and antisecretory drugs in patients with unhealed gastric and duodenal ulcers. J Gastroenterol Hepatol 9:S88–S92PubMedCrossRefGoogle Scholar
  50. Mózsik Gy, Debreceni A, Abdel-Salam OME, Szabó I, Figler M, Ludány A, Juricskay I, Szolcsányi J (1999) Small doses capsaicin given intragastrically inhibit gastric basal gastric secretion in healthy human subjects. J Physiol Paris 93:433–436PubMedCrossRefGoogle Scholar
  51. Mózsik Gy, Vincze Á, Szolcsányi J (2001) Four responses of capsaicin sensitive primary afferent neurons to capsaicin and its analog. Gastric acid secretion, gastric mucosal damage and protection. J Gastroenterol Hepatol 16:193–197CrossRefGoogle Scholar
  52. Mózsik Gy, Rácz I, Szolcsányi J (2005) Gastroprotection induced by capsaicin in human healthy subjects. World J Gastroenterol 11:5180–5184PubMedGoogle Scholar
  53. Mózsik Gy, Szolcsányi J, Dömötör A (2007) Capsaicin research as a new tool to approach of the human gastrointestinal physiology, pathology and pharmacology. Inflammopharmacology 15:232–245PubMedCrossRefGoogle Scholar
  54. Mózsik Gy, Dömötör A, Past T, Vas V, Perjési P, Kuzma M, Gy Blazics, Szolcsányi J (2009a) Capsaicinoids: from the plant cultivation to the production of the human medical therapy. Akadémiai Kiadó, BudapestGoogle Scholar
  55. Mózsik Gy, Past T, Abdel-Salam OME, Kuzma M, Perjési P (2009b) Interdisciplinary review for correlation between the plant origin capsaicinoids, nonsteroidal antiinflammatory drugs, gastrointestinal mucosal damage and prevention in animals and human beings. Inflammopharmacology 17:113–150PubMedCrossRefGoogle Scholar
  56. Mózsik Gy, Past T, Dömötör A, Kuzma M, Perjési P (2010) Production of orally applicable new drug or drug combinations from natural origin capsaicinoids for human medical therapy. Curr Pharm Des 16:1197–1208PubMedCrossRefGoogle Scholar
  57. Mózsik Gy, Szabo IL, Czimmer J (2011a) Approaches to gastrointestinal cytoprotection: from isolated cell, via animal experiments to healthy human subjects and patients with different gastrointestinal disorders. Curr Pharm Des 17:1556–1572CrossRefGoogle Scholar
  58. Myren J (1968) Gastric secretion following stimulation with histamine, histology and gastrin in man. In: Semb L, Myren J (eds) The physiology of gastric secretion. Universitetforlaget, Oslo, pp 413–428Google Scholar
  59. Nagy L, Mózsik Gy, Feledi É, Cs Ruzsa, Zs Vezekényi, Jávor T (1984) Gastric microbleeding measurements during 1 day treatment with indomethacin and indomethacin plus sodium salicylate (1:10) in patients. Acta Physiol Hung 64:373–377PubMedGoogle Scholar
  60. O’Neill J, Brock C, Olesen E, Andersen T, Nilsson M, Dickenson AH (2012) Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol Rev 64:939–997PubMedCentralPubMedCrossRefGoogle Scholar
  61. Onodera S, Shibata M, Tanaka M (1999) Gastroprotective mechanisms of lafutidine, a novel anti-ulcer drug with histamine H2-receptor antagonist activity, Artneim. Forsch. Drug Res 49:519–526Google Scholar
  62. Patty I, Tárnok F, Simon L, Jávor T, Deák G, Sz Benedek, Kenéz P, Nagy L, Mózsik Gy (1984) A comparative dynamic study of the effectiveness of gastric cytoprotection by the vitamin A, De-Nol, sucralfate and ulcer healing by pirenzepine in patients with chronic gastric ulcer (A multiclinical and randomized study). Acta Physiol Hung 64:379–384PubMedGoogle Scholar
  63. Robert A, Nemazis JE, Lancastter C, Hanchar A (1979) Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis by alcohol, HCl, NaOH, hypertonic NaCl and thermal injury. Gastroenterology 77:4433–4443Google Scholar
  64. Sarlós P, Rumi Gy, Szolcsányi J, Mózsik Gy, Vincze Á (2003) Capsaicin prevents the indomethacin-induced gastric mucosal damage in human healthy subject. Gastroenterology 124(Suppl 1):A-511Google Scholar
  65. Sipos G, Altdorfer K, Pongor É, Chen LP, Fehér E (2006) Neuroimmune link in the mucosa of chronic gastritis with Helicobacter pylori infection. Dig Dis Sci 51:1810–1817PubMedCrossRefGoogle Scholar
  66. Szabo S, Taché Y, Tarnawski A (2012) The “Gastric Cytoprotection” concept of André Robert and the origins of a new series of international symposia. In: Filaretova LP, Takeuchi K (eds) Cell/Tissue injury and cytoprotection/organoprotection in the gastrointestinal tract. Front gastrointest res, vol 30. Karger, Basel, pp 1–23Google Scholar
  67. Szabo IL, Czimmer J, Szolcsányi J, Mózsik Gy (2013) Molecular pharmacological approaches to effects of capsaicinoids and of classical antisecretory drugs on gastric basal acid secretion and on indomethacin-induced hastric mucosal damage in human healthy subjects (mini review). Curr Pharm Des 19:84–89PubMedGoogle Scholar
  68. Szállasi A, Blumberg M (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–211PubMedGoogle Scholar
  69. Szolcsányi J (1984) Capsaicin sensitive chemoprotective neural system with dual sensory-afferent function. In: Chalh LA, Szolcsányi J, Lembeck F (eds) Antidromic vasodilatation and neurogenic inflammation. Budapest, Akadémiai Kiadó, pp 27–56Google Scholar
  70. Szolcsányi J (1997) A pharmacological approach to elucidation of the role of different nerve fibres and receptor endings in mediation of pain. J Physiol Paris 73:251–259Google Scholar
  71. Szolcsányi J (2004) Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptide 38:377–384CrossRefGoogle Scholar
  72. Szolcsányi J, Barthó L (1981) Impaired defense mechanisms to peptic ulcer in the capsaicin-desensitized rat. In: Mózsik Gy, Hänninen O, Jávor T (eds) Advances in physiological sciences, gastrointestinal defense mechanisms, vol 29. Pergamon Press, Oxford-Akadémiai Kiadó, Budapest, pp 39–51Google Scholar
  73. Takeuchi K (2006) Unique profile of Lafutidine: a novel histamine H2-receptor antagonist: mucosal protection throughout GI mucosal mediated by capsaicin-sensitive afferent nerves. Acta Pharmacol. (Sinica Suppl):27–35 Google Scholar
  74. Tárnok F, Jávor T, Mózsik Gy, Nagy L, Patty I, Gy Rumi, Solt I (1979) A prospective multiclinical study comparing the effects of placebo, carbenoxolone, atropine cimetidine in patients with duodenal ulcer. Drugs Exp Clin Res 5:157–166Google Scholar
  75. Tárnok F, Deák G, Jávor T, Mózsik Gy, Nagy L, Patty I (1983) Effect of combination atropine and cyproheptadine and atropine + carbenoxolone in duodenal ulcer therapy. Int J Tiss React 5:315–321Google Scholar
  76. Vincze A, Szekeres Gy, Király Á, Bódis B, Mózsik Gy (2004) The immunohistochemical distribution of capsaicin receptor, CGRP and SP in the human gastric mucosa in patients with different gastric disorders. In: Sikirič, Seiwert S, Mózsik Gy, Arakawa T, Takeuchi K (eds) Proceedings of 11th international congress of ulcer resarch. Monduzzi, Bologna, pp 149–153Google Scholar
  77. Wildersmith CH, Ernst T, Gennoni M, Zeyen B, Halter F, Merki HS (1990) Tolerance to H2-receptor antagonist. Dig Dis Sci 35:976–983CrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.First Department of Medicine Medical and Health CentreUniversity of PécsPécsHungary

Personalised recommendations