Skip to main content

Fluid–Structure Interaction in Hemodynamics: Modeling, Analysis, and Numerical Simulation

  • Chapter
  • First Online:
Fluid-Structure Interaction and Biomedical Applications

Abstract

Fluid–structure interaction (FSI) problems arise in many applications. They include multi-physics problems in engineering such as aeroelasticity and propeller turbines, as well as biofluidic application such as self-propulsion organisms, fluid–cell interactions, and the interaction between blood flow and cardiovascular tissue. A comprehensive study of these problems remains to be a challenge due to their strong nonlinearity and multi-physics nature. To make things worse, in many biological applications the structure is composed of several layers, each with different mechanical characteristics. This is, for example, the case with arterial walls, which are composed of three main layers: the intima, media, and adventitia, separated by thin elastic laminae. A stable and efficient FSI solver that simulates the interaction between an incompressible, viscous fluid and a multi-layered structure would be an indispensable tool for the computational studies of solutions.

The multi-physics nature of this class of problems suggests the use of partitioned, modular algorithms based on an operator splitting approach that would separate the different physics in the problem. This chapter presents such a scheme, which can be used not only in computations, but also to prove existence of weak solutions to this class of problems. Particular attention will be payed to multi-physics FSI problems involving structures consisting of multiple layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.A. Adams, Sobolev Spaces. Pure and Applied Mathematics, vol. 65 (Academic [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York/London, 1975)

    Google Scholar 

  2. Å.R. Ahlgren, M. Cinthio, S. Steen, H.W. Persson, T. Sjöberg, K. Lindström, Effects of adrenaline on longitudinal arterial wall movements and resulting intramural shear strain: a first report. Clin. Physiol. Funct. Imaging 29, 353–359 (2009)

    Google Scholar 

  3. R.L. Armentano, J.G. Barra, J. Levenson, A. Simon, R.H. Pichel, Arterial wall mechanics in conscious dogs: assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. Circ. Res. 76, 468–478 (1995)

    Google Scholar 

  4. R.L. Armentano, J.L. Megnien, A. Simon, F. Bellenfant, J.G. Barra, J. Levenson, Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans. Hypertension 26, 48–54 (1995)

    Google Scholar 

  5. M. Astorino, F. Chouly, M.A. Fernández, An added-mass free semi-implicit coupling scheme for fluid-structure interaction. C. R. Math. 347(1–2), 99–104 (2009)

    MATH  Google Scholar 

  6. M. Astorino, F. Chouly, M.A. Fernández Varela, Robin based semi-implicit coupling in fluid-structure interaction: stability analysis and numerics. SIAM J. Sci. Comput. 31, 4041–4065 (2009)

    MathSciNet  MATH  Google Scholar 

  7. F.P.T. Baaijens, A fictitious domain/mortar element method for fluid-structure interaction. Int. J. Numer. Methods Fluids 35, 743–761 (2001)

    MathSciNet  MATH  Google Scholar 

  8. S. Badia, A. Quaini, A. Quarteroni, Splitting methods based on algebraic factorization for fluid-structure interaction. SIAM J. Sci. Comput. 30(4), 1778–1805 (2008)

    MathSciNet  Google Scholar 

  9. S. Badia, F. Nobile, C. Vergara, Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227, 7027–7051 (2008)

    MathSciNet  MATH  Google Scholar 

  10. S. Badia, F. Nobile, C. Vergara, Robin-robin preconditioned Krylov methods for fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 198(33–36), 2768–2784 (2009)

    MathSciNet  MATH  Google Scholar 

  11. V. Barbu, Z. Grujić, I. Lasiecka, A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, in Fluids and Waves. Contemporary Mathematics, vol. 440 (American Mathematical Society, Providence, 2007), pp. 55–82

    Google Scholar 

  12. V. Barbu, Z. Grujić, I. Lasiecka, A. Tuffaha, Smoothness of weak solutions to a nonlinear fluid-structure interaction model. Indiana Univ. Math. J. 57(3), 1173–1207 (2008)

    MathSciNet  MATH  Google Scholar 

  13. A.T. Barker, X.C. Cai, Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling. J. Comput. Phys. 229(3), 642–659 (2010)

    MathSciNet  MATH  Google Scholar 

  14. R.D. Bauer, R. Busse, A. Shabert, Y. Summa, E. Wetterer, Separate determination of the pulsatile elastic and viscous forces developed in the arterial wall in vivo. Pflugers Arch. 380, 221–226 (1979)

    Google Scholar 

  15. Y. Bazilevs, V.M. Calo, Y. Zhang, T.J.R. Hughes, Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput. Mech. 38(4–5), 310–322 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Y. Bazilevs, V.M. Calo, T.J.R. Hughes, Y. Zhang, Isogeometric fluid-structure interaction: theory algorithms and computations. Comput. Mech. 43, 3–37 (2008)

    MathSciNet  MATH  Google Scholar 

  17. H. Beirão da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution problem. J. Math. Fluid Mech. 6(1), 21–52 (2004)

    MathSciNet  MATH  Google Scholar 

  18. J. Bemelmans, G.P. Galdi, M. Kyed, Capillary surfaces and floating bodies. Ann. Mat. Pura ed Appl. 1–16 (2013)

    Google Scholar 

  19. M. Boulakia, Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid. C. R. Math. Acad. Sci. Paris 336(12), 985–990 (2003)

    MathSciNet  MATH  Google Scholar 

  20. M. Bukač, S. Čanić, Longitudinal displacement in viscoelastic arteries: a novel fluid-structure interaction computational model, and experimental validation. J. Math. Biosci. Eng. 10(2), 258–388 (2013)

    Google Scholar 

  21. M. Bukač, S. Čanić, R. Glowinski, J. Tambača, A. Quaini, Fluid-structure interaction in blood flow allowing non-zero longitudinal structure displacement. J. Comput. Phys. 235, 515–541 (2013)

    MathSciNet  Google Scholar 

  22. M. Bukač, S. Čanić, R. Glowinski, B. Muha, A. Quaini, An operator splitting scheme for fluid-structure interaction problems with thick structures. Int. J. Numer. Methods Fluids (Accepted 2013)

    Google Scholar 

  23. M. Bukač, P. Zunino, I. Yotov, Explicit partitioning strategies for interaction of the fluid with a multilayered poroelastic structure: an operator-splitting approach (2013, submitted)

    Google Scholar 

  24. M. Bukac, S. Canic, B. Muha, A partitioned scheme for fluid-composite structure interaction problems (submitted, 2013)

    Google Scholar 

  25. E. Burman, M.A. Fernández, Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility. Comput. Methods Appl. Mech. Eng. 198, 766–784 (2009)

    MATH  Google Scholar 

  26. S. Čanić, E.H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic model of blood flow through compliant axisymmetric vessels. Math. Methods Appl. Sci. 26(14), 1161–1186 (2003)

    MathSciNet  MATH  Google Scholar 

  27. S. Čanić, J. Tambača, G. Guidoboni, A. Mikelić, C.J. Hartley, D. Rosenstrauch, Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. SIAM J. Appl. Math. 67(1), 164–193 (2006)

    MathSciNet  MATH  Google Scholar 

  28. S. Čanić, C.J. Hartley, D. Rosenstrauch, J. Tambača, G. Guidoboni, A. Mikelić, Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics and experimental validation. Ann. Biomed. Eng. 34, 575–592 (2006)

    Google Scholar 

  29. S. Čanić, B. Muha, M. Bukač, Stability of the kinematically coupled β-scheme for fluid-structure interaction problems in hemodynamics (submitted), arXiv:1205.6887v1

    Google Scholar 

  30. P. Causin, J. Gerbeau, F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Eng. 194(42–44), 4506–4527 (2005)

    MathSciNet  MATH  Google Scholar 

  31. M. Cervera, R. Codina, M. Galindo, On the computational efficiency and implementation of block-iterative algorithms for nonlinear coupled problems. Eng. Comput. 13, 4–30 (1996)

    MATH  Google Scholar 

  32. A. Chambolle, B. Desjardins, M.J. Esteban, C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7(3), 368–404 (2005)

    MathSciNet  MATH  Google Scholar 

  33. C.H.A. Cheng, D. Coutand, S. Shkoller, Navier-Stokes equations interacting with a nonlinear elastic biofluid shell. SIAM J. Math. Anal. 39(3), 742–800 (2007)

    MathSciNet  MATH  Google Scholar 

  34. C.H.A. Cheng, S. Shkoller, The interaction of the 3D Navier-Stokes equations with a moving nonlinear Koiter elastic shell. SIAM J. Math. Anal. 42(3), 1094–1155 (2010)

    MathSciNet  MATH  Google Scholar 

  35. P.G. Ciarlet, A two-dimensional nonlinear shell model of Koiter type. C. R. Acad. Sci. Paris Ser. I Math. 331, 405–410 (2000)

    MathSciNet  MATH  Google Scholar 

  36. C.H. Ciarlet, D. Cautnad, An existence theorem for nonlinearly elastic “flexural” shells. J. Elast. 50(3), 261–277 (1998)

    MATH  Google Scholar 

  37. P.G. Ciarlet, V. Lods, Asymptotic analysis of linearly elastic shells. III. Justification of Koiter’s shell equations. Arch. Ration. Mech. Anal. 136, 191–200 (1996)

    MathSciNet  MATH  Google Scholar 

  38. C.R. Ciarlet, A. Roquefort, Justification of a two-dimensional shell model of Koiter type. C. R. Acad. Sci. Paris, Ser. I Math. 331(5), 411–416 (2000)

    Google Scholar 

  39. M. Cinthio, A.R. Ahlgren, T. Jansson, A. Eriksson, H.W. Persson, K. Lindstrom, Evaluation of an ultrasonic echo-tracking method for measurements of arterial wall movements in two dimensions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(8), 1300–1311 (2005)

    Google Scholar 

  40. M. Cinthio, A. Ahlgren, J. Bergkvist, T. Jansson, H.W. Persson, K. Lindstrom, Longitudinal movements and resulting shear strain of the arterial wall. Am. J. Physiol. Heart Circ. Physiol. 291(1), H394–H402 (2006)

    Google Scholar 

  41. C. Conca, J. San Martín, M. Tucsnak, Motion of a rigid body in a viscous fluid. C. R. Acad. Sci. Paris Sér. I Math. 328(6), 473–478 (1999)

    MATH  Google Scholar 

  42. G.H. Cottet, E. Maitre, T. Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction. Math. Model. Numer. Anal. 42(3), 471–492 (2008)

    MathSciNet  MATH  Google Scholar 

  43. D. Coutand, S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid. Arch. Ration. Mech. Anal. 176(1), 25–102 (2005)

    MathSciNet  MATH  Google Scholar 

  44. D. Coutand, S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations. Arch. Ration. Mech. Anal. 179(3), 303–352 (2006)

    MathSciNet  MATH  Google Scholar 

  45. P. Cumsille, T. Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Czechoslov. Math. J. 58(133)(4), 961–992 (2008)

    Google Scholar 

  46. H. Demiray, Small but finite amplitude waves in a prestressed viscoelastic thin tube filled with an inviscid fluid. Int. J. Eng. Sci. 35(4), 353–363 (1997)

    MathSciNet  MATH  Google Scholar 

  47. S. Deparis, M.A. Fernández, L. Formaggia, Acceleration of a fixed point algorithm for a fluid-structure interaction using transpiration condition. Math. Model. Numer. Anal. 37, 601–616 (2003)

    MATH  Google Scholar 

  48. S. Deparis, M. Discacciati, G. Fourestey, A. Quarteroni, Fluid-structure algorithms based on Steklov-Poincaré operators. Comput. Methods Appl. Mech. Eng. 195, 5797–5812 (2006)

    MathSciNet  MATH  Google Scholar 

  49. B. Desjardins, M.J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146(1), 59–71 (1999)

    MathSciNet  MATH  Google Scholar 

  50. B. Desjardins, M.J. Esteban, C. Grandmont, P. Le Tallec, Weak solutions for a fluid-elastic structure interaction model. Rev. Mat. Complut. 14(2), 523–538 (2001)

    MathSciNet  MATH  Google Scholar 

  51. P. Destuynder, A classification of thin shell theories. Acta Appl. Math. 4, 15–63 (1985)

    MathSciNet  MATH  Google Scholar 

  52. J. Donea, Arbitrary Lagrangian-Eulerian finite element methods, in Computational Methods for Transient Analysis (North-Holland, Amsterdam, 1983)

    Google Scholar 

  53. Q. Du, M.D. Gunzburger, L.S. Hou, J. Lee, Analysis of a linear fluid-structure interaction problem. Discrete Contin. Dyn. Syst. 9(3), 633–650 (2003)

    MathSciNet  MATH  Google Scholar 

  54. Q. Du, M.D. Gunzburger, L.S. Hou, J. Lee, Analysis of linear fluid-structure interaction problem. Discrete Contin. Dyn. Syst. 9, 633–650 (2003)

    MathSciNet  MATH  Google Scholar 

  55. Q. Du, M.D. Gunzburger, L.S. Hou, J. Lee, Semidiscrete finite element approximations of a linear fluid-structure interaction problem. SIAM J. Numer. Anal 42(1), 1–29 (2004)

    MathSciNet  MATH  Google Scholar 

  56. H. Fang, Z. Wang, Z. Lin, M. Liu, Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels. Phys. Rev. E 65, 051925 (2002)

    Google Scholar 

  57. L.J. Fauci, R. Dillon, Biofluidmechanics of reproduction. Ann. Rev. Fluid Mech. 38, 371–394 (2006)

    MathSciNet  Google Scholar 

  58. E. Feireisl, On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal. 167(4), 281–308 (2003)

    MathSciNet  MATH  Google Scholar 

  59. Z.-G. Feng, E.E. Michaelides, The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problem. J. Comput. Phys. 195, 602–628 (2004)

    MATH  Google Scholar 

  60. M.A. Fernández, Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid. C. R. Math. Acad. Sci. Paris 349(7–8), 473–477 (2011)

    MathSciNet  MATH  Google Scholar 

  61. M.A. Fernández, Incremental displacement-correction schemes for incompressible fluid-structure interaction: stability and convergence analysis. Numer. Math. 123(1), 21–65 (2013)

    MathSciNet  MATH  Google Scholar 

  62. M.A. Fernández, M. Moubachir, A Newton method using exact Jacobians for solving fluid-structure coupling. Comput. Struct. 83(2–3), 127–142 (2005)

    Google Scholar 

  63. M.A. Fernández, J. Mullaert, Displacement-velocity correction schemes for incompressible fluid-structure interaction. C. R. Math. Acad. Sci. Paris 349(17–18), 1011–1015 (2011)

    MathSciNet  MATH  Google Scholar 

  64. M.A. Fernández, J.F. Gerbeau, C. Grandmont, A projection algorithm for fluid-structure interaction problems with strong added-mass effect. C. R. Math. 342(4), 279–284 (2006)

    MathSciNet  MATH  Google Scholar 

  65. C. Figueroa, I. Vignon-Clementel, K.E. Jansen, T. Hughes, C. Taylor, A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195, 5685–5706 (2006)

    MathSciNet  MATH  Google Scholar 

  66. A.L. Fogelson, R.D. Guy, Platelet-wall interactions in continuum models of platelet thrombosis: formulation and numerical solution. Math. Med. Biol. 21, 293–334 (2004)

    MATH  Google Scholar 

  67. L. Formaggia, J.F. Gerbeau, F. Nobile, A. Quarteroni, On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191(6–7), 561–582 (2001)

    MathSciNet  MATH  Google Scholar 

  68. Y.C. Fung, Biomechanics: Circulation, 2nd edn. (Springer, New York, 1984)

    Google Scholar 

  69. Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. (Springer, New York, 1993)

    Google Scholar 

  70. G.P. Galdi, On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications, in Handbook of Mathematical Fluid Dynamics, vol. I (North-Holland, Amsterdam, 2002), pp. 653–791

    Google Scholar 

  71. G.P. Galdi, Mathematical problems in classical and non-Newtonian fluid mechanics, in Hemodynamical Flows. Oberwolfach Seminar, vol. 37 (Birkhäuser, Basel, 2008), pp. 121–273

    Google Scholar 

  72. G.P. Galdi, M. Kyed, Steady flow of a Navier-Stokes liquid past an elastic body. Arch. Ration. Mech. Anal. 194(3), 849–875 (2009)

    MathSciNet  MATH  Google Scholar 

  73. G.P. Galdi, A.L. Silvestre, The steady motion of a Navier-Stokes liquid around a rigid body. Arch. Ration. Mech. Anal. 184(3), 371–400 (2007)

    MathSciNet  MATH  Google Scholar 

  74. G.P. Galdi, A. Vaidya, M. Pokorný, D.D. Joseph, J. Feng, Orientation of symmetric bodies falling in a second-order liquid at nonzero Reynolds number. Math. Models Methods Appl. Sci. 12(11), 1653–1690 (2002)

    MathSciNet  MATH  Google Scholar 

  75. J.F. Gerbeau, M. Vidrascu, A quasi-Newton algorithm based on a reduced model for fluid-structure interactions problems in blood flows. Math. Model. Numer. Anal. 37, 631–648 (2003)

    MathSciNet  MATH  Google Scholar 

  76. R. Glowinski, Finite element methods for incompressible viscous flow, in Handbook of Numerical Analysis, vol. 9, ed. by P.G.Ciarlet, J.-L.Lions (North-Holland, Amsterdam, 2003)

    Google Scholar 

  77. C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. SIAM J. Math. Anal. 40(2), 716–737 (2008)

    MathSciNet  MATH  Google Scholar 

  78. B.E. Griffith, On the volume conservation of the immersed boundary method. Commun. Comput. Phys. 12, 401–432 (2012)

    MathSciNet  Google Scholar 

  79. B.E. Griffith, X. Luo, D.M. McQueen, C.S. Peskin, Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int. J. Appl. Mech. 1, 137–177 (2009)

    Google Scholar 

  80. G. Guidoboni, R. Glowinski, N. Cavallini, S. Čanić, Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow. J. Comput. Phys. 228(18), 6916–6937 (2009)

    MathSciNet  MATH  Google Scholar 

  81. G. Guidoboni, N. Cavallini, R. Glowinski, S. Čanić, S. Lapin, A kinematically coupled time-splitting scheme for fluid-structure interaction in blood flow. Appl. Math. Lett. 22(5), 684–688 (2009)

    MathSciNet  MATH  Google Scholar 

  82. G. Guidoboni, M. Guidorzi, M. Padula, Continuous dependence on initial data in fluid-structure motions. J. Math. Fluid Mech. 14(1), 1–32 (2012)

    MathSciNet  MATH  Google Scholar 

  83. J.D. Hamphrey, Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23(1&2), 1–162 (1995)

    Google Scholar 

  84. P. Hansbo, Nitsche’s method for interface problems in computational mechanics. GAMM-Mitt. 28(2), 183–206 (2005)

    MathSciNet  MATH  Google Scholar 

  85. S. Hansen, E. Zuazua, Exact controllability and stabilization of a vibrating string with an interior point mass. SIAM J. Control Optim. 33(5), 1357–1391 (1995)

    MathSciNet  MATH  Google Scholar 

  86. H. Koch, E. Zuazua, A hybrid system of PDE’s arising in multi-structure interaction: coupling of wave equations in n and n − 1 space dimensions, in Recent Trends in Partial Differential Equations. Contemporary Mathematics, vol. 409 (American Mathematical Society, Providence, 2006), pp. 55–77

    Google Scholar 

  87. M. Heil, An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 193(1–2), 1–23 (2004)

    MathSciNet  MATH  Google Scholar 

  88. T.J.R. Hughes, W.K Liu, T.K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329–349 (1981)

    Google Scholar 

  89. A. Hundertmark-Zaušková, M. Lukáčová-Medvidová, Š. Nečasová, On the existence of weak solution to the coupled fluid-structure interaction problem for non-newtonian shear-dependent fluid (2013, submitted)

    Google Scholar 

  90. A. Hundertmark-Zauskova, M. Lukacova-Medvidova, G. Rusnakova, Kinematic splitting algorithm for fluid-structure interaction in hemodynamics. Comput. Methods Appl. Mech. Eng. 265, 83–106 (2013)

    MathSciNet  MATH  Google Scholar 

  91. A. Hundertmark-Zauskova, M. Lukacova-Medvidova, G. Rusnakova, Fluid-Structure Interaction for Shear-Dependent Non-Newtonian Fluids. Topics in Mathematical Modeling and Analysis. Lecture Notes, vol. 7 (Necas Center for Mathematical Modeling, The Check Republic, 2012), pp. 109–158

    Google Scholar 

  92. W.T. Koiter, A consistent first approximation in the general theory of thin elastic shells. Part 1: foundations and linear theory. Technological University, Delft, 5 August 1959

    Google Scholar 

  93. W.T. Koiter, On the foundations of the linear theory of thin elastic shells. I, II. Nederl. Akad. Wetensch. Proc. Ser. B 73, 169–182 (1970)

    Google Scholar 

  94. M. Krafczyk, M. Cerrolaza, M. Schulz, E. Rank, Analysis of 3D transient blood flow passing through an artificial aortic valve by Lattice-Boltzmann methods. J Biomech. 31, 453–462 (1998)

    Google Scholar 

  95. M. Krafczyk, J. Tolke, E. Rank, M. Schulz, Two-dimensional simulation of fluid-structure interaction using Lattice-Boltzmann methods. Comput. Struct. 79, 2031–2037 (2001)

    Google Scholar 

  96. I. Kukavica, A. Tuffaha, M. Ziane, Strong solutions for a fluid structure interaction system. Adv. Differ. Equ. 15(3–4), 231–254 (2010)

    MathSciNet  MATH  Google Scholar 

  97. I. Kukavica, A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem. DCDS-A 32(4), 1355–1389 (2012)

    MathSciNet  MATH  Google Scholar 

  98. I. Kukavica, A. Tuffaha, Well-posedness for the compressible Navier-Stokes-Lamé system with a free interface. Nonlinearity 25(11), 3111–3137 (2012)

    MathSciNet  MATH  Google Scholar 

  99. P. Le Tallec, J. Mouro, Fluid structure interaction with large structural displacements. Comput. Methods Appl. Mech. Eng. 190(24–25), 3039–3067 (2001)

    MATH  Google Scholar 

  100. D. Lengeler, Global weak solutions for an incompressible, generalized Newtonian fluid interacting with a linearly elastic Koiter shell (2012). arXiv:1212.3435

    Google Scholar 

  101. D. Lengeler, M. Ružička, Global weak solutions for an incompressible newtonian fluid interacting with a linearly elastic Koiter shell (2012). arXiv:1207.3696v1

    Google Scholar 

  102. V. Lescarret, E. Zuazua, Numerical approximation schemes for multi-dimensional wave equations in asymmetric spaces. Mathematics of Computation. (fall 2014) (in press)

    Google Scholar 

  103. J. Lequeurre, Existence of strong solutions to a fluid-structure system. SIAM J. Math. Anal. 43(1), 389–410 (2011)

    MathSciNet  MATH  Google Scholar 

  104. J. Lequeurre, Existence of strong solutions for a system coupling the Navier-Stokes equations and a damped wave equation. J. Math. Fluid Mech. 15(2), 249–271 (2013)

    MathSciNet  MATH  Google Scholar 

  105. A. Leuprecht, K. Perktold, M. Prosi, T. Berk, W. Trubel, H. Schima, Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. J. Biomech. 35(2), 225–236 (2002)

    Google Scholar 

  106. S. Lim, C.S. Peskin, Simulations of the whirling instability by the immersed boundary method. SIAM J. Sci. Comput. 25, 2066–2083 (2004)

    MathSciNet  MATH  Google Scholar 

  107. J.-L. Lions, E. Magenes, Non-homogeneous Boundary Value Problems and Applications, vol. I (Springer, New York, 1972) Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181

    Google Scholar 

  108. P. Luchini, M. Lupo, A. Pozzi, Unsteady Stokes flow in a distensible pipe. Z. Angew. Math. Mech. 71, 367–378 (1991)

    MathSciNet  MATH  Google Scholar 

  109. X. Ma, G.C. Lee, S.G. Lu, Numerical simulation for the propagation of nonlinear pulsatile waves in arteries. ASME J. Biomech. Eng. 114, 490–496 (1992)

    Google Scholar 

  110. H. Matthies, J. Steindorf, Numerical efficiency of different partitioned methods for fluid-structure interaction. Z. Angew. Math. Mech. 2, 557–558 (2000)

    Google Scholar 

  111. C. Michler, S.J. Hulshoff, E.H. van Brummelen, R. de Borst, A monolithic approach to fluid-structure interaction. Comput. Fluids 33(5–6), 839–848 (2004)

    MATH  Google Scholar 

  112. L.A. Miller, C.S. Peskin, A computational fluid dynamics study of ‘clap and fling’ in the smallest insects. J. Exp. Biol. 208, 195–212 (2005)

    Google Scholar 

  113. B. Muha, A note on the trace theorem for domains which are locally subgraph of a Hlder continuous function. Netw. Heterogeneous Media 9(1), 191–196 (2014) B. Muha, A note on the trace theorem for domains which are locally subgraph of a Hölder continuous function. Netw. Heterogeneous Media (2013, accepted)

    Google Scholar 

  114. B. Muha, S. Čanić, Existence of a weak solution to a nonlinear fluid–structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Ration. Mech. Anal. 207(3), 919–968 (2013)

    MathSciNet  MATH  Google Scholar 

  115. B. Muha, S. Čanić, Existence of a solution to a fluid-multi-layered-structure interaction problem. J. Differ. Equ. (in print 2013). arXiv:1305.5310

    Google Scholar 

  116. B. Muha, S. Canic, A nonlinear, 3D fluid-structure interaction problem driven by the time-dependent dynamic pressure data: a constructive existence proof, Communications in Information and Systems (CIS) 13(3), 357–397 (2013)

    Google Scholar 

  117. B. Muha, S. Čanić, A fluid-stent-artery interaction problem (in preparation)

    Google Scholar 

  118. B. Muha, A note on optimal regularity and regularizing effects of point mass coupling for a heat-wave system (submitted, 2014)

    Google Scholar 

  119. C.M. Murea, S. Sy, A fast method for solving fluid-structure interaction problems numerically. Int. J. Numer. Methods Fluids 60(10), 1149–1172 (2009)

    MathSciNet  MATH  Google Scholar 

  120. F. Nobile, Numerical approximation of fluid-structure interaction problems with application to haemodynamics. Ph.D. thesis, EPFL Switzerland, 2001

    Google Scholar 

  121. F. Nobile, C. Vergara, An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30(2), 731–763 (2008)

    MathSciNet  MATH  Google Scholar 

  122. C. Peskin, Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220–252 (1977)

    MathSciNet  MATH  Google Scholar 

  123. C. Peskin, D.M. McQueen, A three-dimensional computational method for blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81(2), 372–405 (1989)

    MathSciNet  MATH  Google Scholar 

  124. M. Persson, R. Ahlgren, T. Jansson, A. Eriksson, H.W. Persson, K. Lindstrom, A new non-invasive ultrasonic method for simultaneous measurements of longitudinal and radial arterial wall movements: first in vivo trial. Clin. Physiol. Funct. Imaging 23(5), 247–251 (2003)

    Google Scholar 

  125. G. Pontrelli, A mathematical model of flow in a liquid-filled visco-elastic tube. Med. Biol. Eng. Comput. 40(5), 550–556 (2002)

    Google Scholar 

  126. A. Quaini, Algorithms for fluid-structure interaction problems arising in hemodynamics. Ph.D. thesis, EPFL Switzerland, 2009

    Google Scholar 

  127. A. Quaini, A. Quarteroni, A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method. Math. Models Methods Appl. Sci. 17(6), 957–985 (2007)

    MathSciNet  MATH  Google Scholar 

  128. A. Quarteroni, M. Tuveri, A. Veneziani, Computational vascular fluid dynamics: problems, models and methods. Survey article. Comput. Vis. Sci. 2, 163–197 (2000)

    MATH  Google Scholar 

  129. J. Rauch, X. Zhang, E. Zuazua, Polynomial decay for a hyperbolic-parabolic coupled system. J. Math. Pures Appl. (9) 84(4), 407–470 (2005)

    Google Scholar 

  130. J.A. San Martín, V. Starovoitov, M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161(2), 113–147 (2002)

    MathSciNet  MATH  Google Scholar 

  131. D.U. Silverthorn, Human Physiology: An Integrated Approach, 4th edn. (Pearson Education, San Francisco, 2007)

    Google Scholar 

  132. J. Simon, Compact sets in the space L p(0, T; B). Ann. Math. Pura Appl. (4) 146, 65–96 (1987)

    Google Scholar 

  133. S. Svedlund, L.M. Gan, Longitudinal wall motion of the common carotid artery can be assessed by velocity vector imaging. Clin. Physiol. Funct. Imaging 31(1), 32–38 (2011)

    Google Scholar 

  134. J. Tambača, Notes on the derivation of the cylindrical Koiter shell (2004) Private Communication

    Google Scholar 

  135. R. Temam, Sur la résolution exacte et approchée d’un problème hyperbolique non linéaire de T. Carleman. Arch. Ration. Mech. Anal. 35, 351–362 (1969)

    MathSciNet  MATH  Google Scholar 

  136. R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and its Applications, vol. 2 (North-Holland, Amsterdam, 1977)

    Google Scholar 

  137. R. van Loon, P. Anderson, J. de Hart, F. Baaijens, A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves. Int. J. Numer. Methods Fluids 46, 533–544 (2004)

    MATH  Google Scholar 

  138. I. Velčić, Nonlinear weakly curved rod by \(\Gamma \)-convergence. J. Elast. 108(2), 125–150 (2012)

    MATH  Google Scholar 

  139. S.Z. Zhao, X.Y. Xu, M.W. Collins, The numerical analysis of fluid-solid interactions for blood flow in arterial structures Part 2: development of coupled fluid-solid algorithms. Proc. Inst. Mech. Eng. Part H 212, 241–252 (1998)

    Google Scholar 

  140. X. Zhang, E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction. Arch. Ration. Mech. Anal. 184(1), 49–120 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of the authors has been supported in part by the National Science Foundation under the following grants: NIGMS DMS-1263572, DMS-1318763, DMS-1311709, DMS-1262385, DMS-1109189, and by the Texas Higher Education Board under grant ARP-003652-0023-2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunčica Čanić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Čanić, S., Muha, B., Bukač, M. (2014). Fluid–Structure Interaction in Hemodynamics: Modeling, Analysis, and Numerical Simulation. In: Bodnár, T., Galdi, G., Nečasová, Š. (eds) Fluid-Structure Interaction and Biomedical Applications. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0822-4_2

Download citation

Publish with us

Policies and ethics