Advertisement

Diffraction from Polygonal-conical Screens, an Operator Approach

  • Luís P. CastroEmail author
  • Roland Duduchava
  • Frank-Olme Speck
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 242)

Abstract

The aim of this work is to construct explicitly resolvent operators for a class of boundary value problems in diffraction theory. These are formulated as boundary value problems for the three-dimensional Helmholtz equation with Dirichlet or Neumann conditions on a plane screen of polynomialconical form (including unbounded and multiply-connected screens), in weak formulation. The method is based upon operator theoretical techniques in Hilbert spaces, such as the construction of matrical coupling relations and certain orthogonal projections, which represent new techniques in this area of applications. Various cross connections are exposed, particularly considering classical Wiener–Hopf operators in Sobolev spaces as general Wiener–Hopf operators in Hilbert spaces and studying relations between the crucial operators in game. Former results are extended, particularly to multiply-connected screens.

Keywords

Diffraction plane screen polygonal domain conical domain Dirichlet problem Neumann problem explicit solution Wiener–Hopf operator Sobolev space matrical coupling orthogonal projector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Bart, I. Gohberg and M. Kaashoek, The coupling method for solving integral equations. Oper. Theory Adv. Appl. 2 (1984), 39–73.MathSciNetGoogle Scholar
  2. [2]
    H. Bart, I. Gohberg and M. Kaashoek, Addendum to: The coupling method for solving integral equations. Integr. Equ. Oper. Theory 8 (1985), 890–891.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    H. Bart, I. Gohberg, M.A. Kaashoek, A.C.M. Ran, Schur complements and state space realizations. Linear Algebra Appl. 399 (2005), 203–224.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    H. Bart and V.E. Tsekanovskii, Matricial coupling and equivalence after extension. Oper. Theory Adv. Appl. 59 (1991), 143–160.MathSciNetGoogle Scholar
  5. [5]
    H. Bart, V.E. Tsekanovskii, Complementary Schur complements. Linear Algebra Appl. 197 (1994), 651–658.CrossRefMathSciNetGoogle Scholar
  6. [6]
    L.P. Castro and F.-O. Speck, Regularity properties and generalized inverses of deltarelated operators. Z. Anal. Anwend. 17 (1998), 577–598.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    L.P. Castro and F.-O. Speck, Relations between convolution type operators on intervals and on the half-line. Integr. Equ. Oper. Theory 37 (2000) 169–207.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    L.P. Castro, F.-O. Speck and F.S. Teixeira, On a class of wedge diffraction problems posted by Erhard Meister. Oper. Theory Adv. Appl. 147 (2004), 211–238.MathSciNetGoogle Scholar
  9. [9]
    P.G. Ciarlet, Mathematical Elasticity III: Theory of Shells. Studies in Mathematics and Applications 29. Elsevier, North-Holland, Amsterdam, 2000.Google Scholar
  10. [10]
    A. Devinatz and M. Shinbrot, General Wiener–Hopf operators. Trans. AMS 145 (1969), 467–494.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    R. Duduchava and F.-O. Speck, Bessel potential operators for the quarter-plane. Appl. Anal. 45 (1992), 49-68.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    R. Duduchava and F.-O. Speck, Pseudodifferential operators on compact manifolds with Lipschitz boundary. Math. Nachr. 160 (1993), 149–191.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    R. Duduchava, W. Wendland, The Wiener–Hopf method for systems of pseudodifferential equations with an application to crack problems. Integr. Equ. Oper. Theory 23 (1995), 294–335.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    T. Ehrhardt, A.P. Nolasco and F.-O. Speck, Boundary integral methods for wedge diffraction problems: the angle 2π/n, Dirichlet and Neumann conditions. Oper. Matrices 5 (2011), 1–40.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    T. Ehrhardt, A.P. Nolasco and F.-O. Speck, A Riemann surface approach for diffraction from rational angles. Oper. Matrices, to appear, 55 p.Google Scholar
  16. [16]
    G.I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations. American Mathematical Society, Providence, Rhode Island, 1981.Google Scholar
  17. [17]
    I.Z. Gochberg and I.A. Feldman, Faltungsgleichungen und Projektionsverfahren zu ihrer Lösung (in German). Birkhäuser and Akademie-Verlag, Berlin, 1974 (Russian edition in 1971).Google Scholar
  18. [18]
    P. Grisvard, Elliptic Problems in Non-Smooth Domains. Pitman, London, 1985.Google Scholar
  19. [19]
    P.R. Halmos, A Hilbert Space Problem Book. Second edition, Springer, New York, 1982.Google Scholar
  20. [20]
    G.C. Hsiao and W.L. Wendland, Boundary Integral Equations. Springer, Berlin, 2008.Google Scholar
  21. [21]
    D.S. Jones, Diffraction at frequencies by a circular disc. Proc. Camb. Philos. Soc. 61 (1965), 223–245.CrossRefzbMATHGoogle Scholar
  22. [22]
    M.G. Krein, Integral equations on a half-line with kernel depending upon the difference of the arguments. AMS Transl., Ser. 2, 22 (1962), 163–288.Google Scholar
  23. [23]
    V.G. Maz’ya and S.V. Poborchi, Differentiable Functions in Bad Domains. World Scientific, Singapure, 1997.Google Scholar
  24. [24]
    E. Meister and F.-O. Speck, Scalar diffraction problems for Lipschitz and polygonal screens. Z. Angew. Math. Mech. 67 (1987), 434–435.MathSciNetGoogle Scholar
  25. [25]
    E. Meister and F.-O. Speck, A contribution to the quarter-plane problem in diffraction theory. J. Math. Anal. Appl. 130 (1988), 223–236.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    E. Meister and F.-O. Speck, Modern Wiener–Hopf methods in diffraction theory. Ordinary and Partial Differential Equations 2, Pitman Res. Notes Math. Ser. 216 (Longman, London, 1989), 130–171.Google Scholar
  27. [27]
    S.G. Mikhlin and S. Prössdorf, Singular Integral Operators. Extended and partly modified translation from the German by A. Böttcher and R. Lehmann. Springer, Berlin, 1986 (German edition by Akademie-Verlag, Berlin, 1980).Google Scholar
  28. [28]
    A. Moura Santos, F.-O. Speck and F.S. Teixeira, Minimal normalization of Wiener– Hopf operators in spaces of Bessel potentials. J. Math. Anal. Appl. 225 (1998), 501– 531.CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    S. Prössdorf, Some Classes of Singular Equations. North-Holland, Amsterdam, 1978 (German edition by Akademie-Verlag, Berlin, 1974).Google Scholar
  30. [30]
    A.F. dos Santos, Abstract Wiener–Hopf Operators – Geometric Perspective. Thesis on the occasion of “Provas de Agregação” (in Portuguese), Departamento de Matemática, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisbon, 1988.Google Scholar
  31. [31]
    A.F. dos Santos, General Wiener–Hopf operators and representation of their generalized inverses. Oper. Theory Adv. Appl. 41 (1989), 473–483.Google Scholar
  32. [32]
    I. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. I, II. J. für Math. 147 (1917), 205–232; 148 (1918), 122–145 (in German).Google Scholar
  33. [33]
    M. Shinbrot, On singular integral operators. J. Math. Mech. 13 (1964), 395–406.zbMATHMathSciNetGoogle Scholar
  34. [34]
    M. Shinbrot, On the range of general Wiener–Hopf operators. J. Math. Mech. 18 (1969), 587–601.zbMATHMathSciNetGoogle Scholar
  35. [35]
    S.G. Sommerfeld, Mathematische Theorie der Diffraction. Math. Annalen 47 (1896), 317–374.CrossRefzbMATHMathSciNetGoogle Scholar
  36. [36]
    F.-O. Speck, On the generalized invertibility of Wiener–Hopf operators in Banach spaces. Integr. Equ. Oper. Theory 6 (1983), 458–465.CrossRefMathSciNetGoogle Scholar
  37. [37]
    F.-O. Speck, General Wiener–Hopf Factorization Methods. Pitman, London, 1985.Google Scholar
  38. [38]
    F.-O. Speck, Mixed boundary value problems of the type of Sommerfeld’s half-plane problem. Proc. R. Soc. Edinb., Sect. A 104 (1986), 261–277.Google Scholar
  39. [39]
    F.-O. Speck, Diffraction from a three-quarter-plane using an abstract Babinet principle. Z. Ang. Math. Mech. 93 (2013), 485–491.CrossRefzbMATHMathSciNetGoogle Scholar
  40. [40]
    F.-O. Speck, On the reduction of linear systems related to boundary value problems. Oper. Theory Adv. Appl. 228 (2013), 391–406.MathSciNetGoogle Scholar
  41. [41]
    F.-O. Speck and E. Stephan, Boundary value problems for the Helmholtz equation in an octant. Integr. Equ. Oper. Theory 62 (2008), 269–300.CrossRefzbMATHMathSciNetGoogle Scholar
  42. [42]
    E. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, N.J., 1970.Google Scholar
  43. [43]
    E. Stephan, Boundary Integral Equations for Mixed Boundary Value Problems, Screen and Transmission Problems in3 . Habilitation thesis, Preprint 848, Fachbereich Mathematik, Technische Hochschule Darmstadt, 1984.Google Scholar
  44. [44]
    V.B. Vasil’ev, Wave Factorization of Elliptic Symbols: Theory and Applications. Kluver, Dordrecht, 2000.Google Scholar
  45. [45]
    S.S. Vinogradov, A method for the solution of a problem of diffraction on a thin disc. Dokl. Akad. Nauk Ukr. SSR, Ser. A 1983, No.6 (1983), 37–40 (in Russian).Google Scholar
  46. [46]
    F. Zhang (ed.), The Schur Complement and its Applications. Numerical Methods and Algorithms 4. Springer-Verlag, New York, 2005.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Luís P. Castro
    • 1
    Email author
  • Roland Duduchava
    • 2
  • Frank-Olme Speck
    • 3
  1. 1.Departamento de MatemáticaUniversidade de AveiroAveiroPortugal
  2. 2.Andrea Razmadze Mathematical InstituteIvane Javakhishvili State UniversityTbilisiGeorgia
  3. 3.Centro de Análise Funcional e Aplicações Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations