Skip to main content

Activation of the TCR Complex by Small Chemical Compounds

  • Chapter
  • First Online:

Part of the book series: Experientia Supplementum ((EXS,volume 104))

Abstract

Small chemical compounds and certain metal ions can activate T cells, resulting in drug hypersensitivity reactions that are a main problem in pharmacology. Mostly, the drugs generate new antigenic epitopes on peptide-major histocompatibility complex (MHC) molecules that are recognized by the T-cell antigen receptor (TCR). In this review we discuss the molecular mechanisms of how the drugs alter self-peptide-MHC, so that neo-antigens are produced. This includes (1) haptens covalently bound to peptides presented by MHC, (2) metal ions and drugs that non-covalently bridge self-pMHC to the TCR, and (3) drugs that allow self-peptides to be presented by MHCs that otherwise are not presented. We also briefly discuss how a second signal—next to the TCR—that naïve T cells require to become activated is generated in the drug hypersensitivity reactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adam J, Pichler WJ, Yerly D (2011) Delayed drug hypersensitivity: models of T-cell stimulation. Br J Clin Pharmacol 71:701–707

    Article  PubMed  CAS  Google Scholar 

  • Aivazian D, Stern LJ (2000) Phosphorylation of T cell receptor zeta is regulated by a lipid dependent folding transition. Nat Struct Biol 7:1023–1026

    Article  PubMed  CAS  Google Scholar 

  • Alarcon B, Gil D, Delgado P, Schamel WW (2003) Initiation of TCR signaling: regulation within CD3 dimers. Immunol Rev 191:38–46

    Article  PubMed  CAS  Google Scholar 

  • Aleksic M, Dushek O, Zhang H, Shenderov E, Chen JL, Cerundolo V, Coombs D, van der Merwe PA (2010) Dependence of T cell antigen recognition on T cell receptor-peptide MHC confinement time. Immunity 32:163–174

    Article  PubMed  CAS  Google Scholar 

  • Bachmann MF, Barner M, Viola A, Kopf M (1999) Distinct kinetics of cytokine production and cytolysis in effector and memory T cells after viral infection. Eur J Immunol 29:291–299

    Article  PubMed  CAS  Google Scholar 

  • Batchelor FR, Dewdney JM, Gazzard D (1965) Penicillin allergy: the formation of the penicilloyl determinant. Nature 206:362–364

    Article  PubMed  CAS  Google Scholar 

  • Blanca M, Romano A, Torres MJ, Fernandez J, Mayorga C, Rodriguez J, Demoly P, Bousquet PJ, Merk HF, Sanz ML, Ott H, Atanaskovic-Markovic M (2009) Update on the evaluation of hypersensitivity reactions to betalactams. Allergy 64:183–193

    Article  PubMed  CAS  Google Scholar 

  • Boesteanu AC, Katsikis PD (2009) Memory T cells need CD28 costimulation to remember. Semin Immunol 21:69–77

    Article  PubMed  CAS  Google Scholar 

  • Boniface JJ, Rabinowitz JD, Wülfing C, Hampl J, Reich Z, Altman JD, Kantor RM, Beeson C, McConnell HM, Davis MM (1998) Initiation of signal transduction through the T cell receptor requires the peptide multivalent engagement of MHC ligands. Immunity 9:459–466

    Article  PubMed  CAS  Google Scholar 

  • Bretscher P, Cohn M (1970) A theory of self-nonself discrimination. Science 169:1042–1049

    Article  PubMed  CAS  Google Scholar 

  • Bueno C, Lemke CD, Criado G, Baroja ML, Ferguson SS, Nur-Ur Rahman AK, Tsoukas CD, McCormick JK, Madrenas J (2006) Bacterial superantigens bypass Lck-dependent T cell receptor signaling by activating a Ga11-dependent, PLC-b-mediated pathway. Immunity 25:67–78

    Article  PubMed  CAS  Google Scholar 

  • Bueno C, Criado G, McCormick JK, Madrenas J (2007) T cell signalling induced by bacterial superantigens. Chem Immunol Allergy 93:161–180

    Article  PubMed  CAS  Google Scholar 

  • Burkhart C, Britschgi M, Strasser I, Depta JP, von Greyerz S, Barnaba V, Pichler WJ (2002) Non-covalent presentation of sulfamethoxazole to human CD4+ T cells is independent of distinct human leucocyte antigen-bound peptides. Clin Exp Allergy 32:1635–1643

    Article  PubMed  CAS  Google Scholar 

  • Callan HE, Jenkins RE, Maggs JL, Lavergne SN, Clarke SE, Naisbitt DJ, Park BK (2009) Multiple adduction reactions of nitroso sulfamethoxazole with cysteinyl residues of peptides and proteins: implications for hapten formation. Chem Res Toxicol 22:937–948

    Article  PubMed  CAS  Google Scholar 

  • Castrejon JL, Berry N, El-Ghaiesh S, Gerber B, Pichler WJ, Park BK, Naisbitt DJ (2010) Stimulation of human T cells with sulfonamides and sulfonamide metabolites. J Allergy Clin Immunol 125(411–418):e414

    Google Scholar 

  • Chang TW, Kung PC, Gingras SP, Goldstein G (1981) Does OKT3 monoclonal antibody react with an antigen-recognition structure on human T cells? Proc Natl Acad Sci U S A 78:1805–1808

    Article  PubMed  CAS  Google Scholar 

  • Chessman D, Kostenko L, Lethborg T, Purcell AW, Williamson NA, Chen Z, Kjer-Nielsen L, Mifsud NA, Tait BD, Holdsworth R, Almeida CA, Nolan D, Macdonald WA, Archbold JK, Kellerher AD, Marriott D, Mallal S, Bharadwaj M, Rossjohn J, McCluskey J (2008) Human leukocyte antigen class I-restricted activation of CD8+ T cells provides the immunogenetic basis of a systemic drug hypersensitivity. Immunity 28:822–832

    Article  PubMed  CAS  Google Scholar 

  • Cho BK, Wang C, Sugawa S, Eisen HN, Chen J (1999) Functional differences between memory and naive CD8 T cells. Proc Natl Acad Sci U S A 96:2976–2981

    Article  PubMed  CAS  Google Scholar 

  • Choudhuri K, van der Merwe PA (2007) Molecular mechanisms involved in T cell receptor triggering. Semin Immunol 19:255–261

    Article  PubMed  CAS  Google Scholar 

  • Choudhuri K, Wiseman D, Brown MH, Gould K, van der Merwe PA (2005) T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436:578–582

    Article  PubMed  CAS  Google Scholar 

  • Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, Wu JY, Chen YT (2004) Medical genetics: a marker for Stevens-Johnson syndrome. Nature 428:486

    Article  PubMed  CAS  Google Scholar 

  • Cochran JR, Cameron TO, Stern LJ (2000) The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12:241–250

    Article  PubMed  CAS  Google Scholar 

  • Cribb AE, Spielberg SP (1992) Sulfamethoxazole is metabolized to the hydroxylamine in humans. Clin Pharmacol Therap 51:522–526

    Article  CAS  Google Scholar 

  • Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe'er I, Floratos A, Daly MJ, Goldstein DB, John S, Nelson MR, Graham J, Park BK, Dillon JF, Bernal W, Cordell HJ, Pirmohamed M, Aithal GP, Day CP (2009) HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 41:816–819

    Article  PubMed  CAS  Google Scholar 

  • Davis SJ, van der Merwe PA (2006) The kinetic-segregation model: TCR triggering and beyond. Nat Immunol 7:803–809

    Article  PubMed  CAS  Google Scholar 

  • DeFord-Watts LM, Dougall DS, Belkaya S, Johnson BA, Eitson JL, Roybal KT, Barylko B, Albanesi JP, Wulfing C, Van Oers NS (2011) The CD3 zeta subunit contains a phosphoinositide-binding motif that is required for the stable accumulation of TCR-CD3 complex at the immunological synapse. J Immunol 186:6839–6847

    Article  PubMed  CAS  Google Scholar 

  • Depta JP, Altznauer F, Gamerdinger K, Burkhart C, Weltzien HU, Pichler WJ (2004) Drug interaction with T-cell receptors: T-cell receptor density determines degree of cross-reactivity. J Allergy Clin Immunol 113:519–527

    Article  PubMed  CAS  Google Scholar 

  • Fraser JD, Proft T (2008) The bacterial superantigen and superantigen-like proteins. Immunol Rev 225:226–243

    Article  PubMed  CAS  Google Scholar 

  • Gamerdinger K, Moulon C, Karp DR, Van Bergen J, Koning F, Wild D, Pflugfelder U, Weltzien HU (2003) A new type of metal recognition by human T cells: contact residues for peptide-independent bridging of T cell receptor and major histocompatibility complex by nickel. J Exp Med 197:1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC (1996) Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384:134–141

    Article  PubMed  CAS  Google Scholar 

  • Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR, Peterson PA, Teyton L, Wilson IA (1996) An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 274:209–219

    Article  PubMed  CAS  Google Scholar 

  • Gil D, Schamel WW, Montoya M, Sanchez-Madrid F, Alarcon B (2002) Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109:901–912

    Article  PubMed  CAS  Google Scholar 

  • Gregoire C, Lin SY, Mazza G, Rebai N, Luescher IF, Malissen B (1996) Covalent assembly of a soluble T cell receptor-peptide-major histocompatibility class I complex. Proc Natl Acad Sci U S A 93:7184–7189

    Article  PubMed  CAS  Google Scholar 

  • Griem P, von Vultee C, Panthel K, Best SL, Sadler PJ, Shaw CF 3rd (1998) T cell cross-reactivity to heavy metals: identical cryptic peptides may be presented from protein exposed to different metals. Eur J Immunol 28:1941–1947

    Article  PubMed  CAS  Google Scholar 

  • Iezzi G, Karjalainen K, Lanzavecchia A (1998) The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8:89–95

    Article  PubMed  CAS  Google Scholar 

  • Illing PT, Vivian JP, Dudek NL, Kostenko L, Chen Z, Bharadwaj M, Miles JJ, Kjer-Nielsen L, Gras S, Williamson NA, Burrows SR, Purcell AW, Rossjohn J, McCluskey J (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486:554–558

    PubMed  CAS  Google Scholar 

  • Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM (2002) Direct observation of ligand recognition by T cells. Nature 419:845–849

    Article  PubMed  CAS  Google Scholar 

  • James JR, Vale RD (2012) Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487:64–69

    Article  PubMed  CAS  Google Scholar 

  • Jenkins MK, Chen CA, Jung G, Mueller DL, Schwartz RH (1990) Inhibition of antigen-specific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J Immunol 144:16–22

    PubMed  CAS  Google Scholar 

  • Jenkins RE, Meng X, Elliott VL, Kitteringham NR, Pirmohamed M, Park BK (2009) Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin haptenated HSA in vitro and in vivo. Proteomics Clin Appl 3:720–729

    Article  PubMed  CAS  Google Scholar 

  • Kannan A, Huang W, Huang F, August A (2012) Signal transduction via the T cell antigen receptor in naive and effector/memory T cells. Int J Biochem Cell Biol 44:2129–2134

    Article  PubMed  CAS  Google Scholar 

  • Kaye J, Janeway CA Jr (1984) The Fab fragment of a directly activating monoclonal antibody that precipitates a disulfide-linked heterodimer from a helper T cell clone blocks activation by either allogeneic Ia or antigen and self-Ia. J Exp Med 159:1397–1412

    Article  PubMed  CAS  Google Scholar 

  • Kedl RM, Mescher MF (1998) Qualitative differences between naive and memory T cells make a major contribution to the more rapid and efficient memory CD8+ T cell response. J Immunol 161:674–683

    PubMed  CAS  Google Scholar 

  • Kimachi K, Croft M, Grey HM (1997) The minimal number of antigen-major histocompatibility complex class II complexes required for activation of naive and primed T cells. Eur J Immunol 27:3310–3317

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Ferez M, Swamy M, Arechaga I, Rejas MT, Valpuesta JM, Schamel WW, Alarcon B, van Santen HM (2011) Increased sensitivity of antigen-experienced T cells through the enrichment of oligomeric T cell receptor complexes. Immunity 35:375–387

    Article  PubMed  CAS  Google Scholar 

  • Landsteiner K, Jacobs J (1935) Studies on the sensitization of animals with simple chemical compounds. J Exp Med 61:643–656

    Article  PubMed  CAS  Google Scholar 

  • Levine BB, Ovary Z (1961) Studies on the mechanism of the formation of the penicillin antigen. III. The N-(D-alpha-benzylpenicilloyl) group as an antigenic determinant responsible for hypersensitivity to penicillin G. J Exp Med 114:875–904

    Article  PubMed  CAS  Google Scholar 

  • London CA, Lodge MP, Abbas AK (2000) Functional responses and costimulator dependence of memory CD4+ T cells. J Immunol 164:265–272

    PubMed  CAS  Google Scholar 

  • Lu L, Vollmer J, Moulon C, Weltzien HU, Marrack P, Kappler J (2003) Components of the ligand for a Ni++ reactive human T cell clone. J Exp Med 197:567–574

    Article  PubMed  CAS  Google Scholar 

  • Luescher IF, Vivier E, Layer A, Mahiou J, Godeau F, Malissen B, Romero P (1995) CD8 modulation of T-cell antigen receptor-ligand interactions on living cytotoxic T lymphocytes. Nature 373:353–356

    Article  PubMed  CAS  Google Scholar 

  • Minguet S, Swamy M, Alarcon B, Luescher IF, Schamel WW (2007) Full activation of the T cell receptor requires both clustering and conformational changes at CD3. Immunity 26:43–54

    Article  PubMed  CAS  Google Scholar 

  • Molnar E, Deswal S, Schamel WW (2010) Pre-clustered TCR complexes. FEBS Lett 584:4832–4837

    Article  PubMed  CAS  Google Scholar 

  • Molnar E, Swamy M, Holzer M, Beck-Garcia K, Worch R, Thiele C, Guigas G, Boye K, Luescher IF, Schwille P, Schubert R, Schamel WW (2012) Cholesterol and sphingomyelin drive ligand-independent T-cell antigen receptor nanoclustering. J Biol Chem 287:42664–42674

    Article  PubMed  CAS  Google Scholar 

  • Moulon C, Vollmer J, Weltzien HU (1995) Characterization of processing requirements and metal cross-reactivities in T cell clones from patients with allergic contact dermatitis to nickel. Eur J Immunol 25:3308–3315

    Article  PubMed  CAS  Google Scholar 

  • Norcross MA, Luo S, Lu L, Boyne MT, Gomarteli M, Rennels AD, Woodcock J, Margulies DH, McMurtrey C, Vernon S, Hildebrand WH, Buchli R (2012) Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS 26:F21–F29

    Article  PubMed  CAS  Google Scholar 

  • Ortmann B, Martin S, von Bonin A, Schiltz E, Hoschutzky H, Weltzien HU (1992) Synthetic peptides anchor T cell-specific TNP epitopes to MHC antigens. J Immunol 148:1445–1450

    PubMed  CAS  Google Scholar 

  • Ostrov DA, Grant BJ, Pompeu YA, Sidney J, Harndahl M, Southwood S, Oseroff C, Lu S, Jakoncic J, de Oliveira CA, Yang L, Mei H, Shi L, Shabanowitz J, English AM, Wriston A, Lucas A, Phillips E, Mallal S, Grey HM, Sette A, Hunt DF, Buus S, Peters B (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci U S A 109:9959–9964

    Article  PubMed  CAS  Google Scholar 

  • Petersson K, Forsberg G, Walse B (2004) Interplay between superantigens and immunoreceptors. Scand J Immunol 59:345–355

    Article  PubMed  CAS  Google Scholar 

  • Pichler WJ (2005) Direct T-cell stimulations by drugs–bypassing the innate immune system. Toxicology 209:95–100

    Article  PubMed  CAS  Google Scholar 

  • Pichler WJ, Naisbitt DJ, Park BK (2011) Immune pathomechanism of drug hypersensitivity reactions. J Allergy Clin Immunol 127:S74–S81

    Article  PubMed  CAS  Google Scholar 

  • Pihlgren M, Dubois PM, Tomkowiak M, Sjogren T, Marvel J (1996) Resting memory CD8+ T cells are hyperreactive to antigenic challenge in vitro. J Exp Med 184:2141–2151

    Article  PubMed  CAS  Google Scholar 

  • Rogers PR, Dubey C, Swain SL (2000) Qualitative changes accompany memory T cell generation: faster, more effective responses at lower doses of antigen. J Immunol 164:2338–2346

    PubMed  CAS  Google Scholar 

  • Rudd CE, Taylor A, Schneider H (2009) CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 229:12–26

    Article  PubMed  CAS  Google Scholar 

  • Schamel WW, Risueno RM, Minguet S, Ortiz AR, Alarcon B (2006) A conformation- and avidity-based proofreading mechanism for the TCR-CD3 complex. Trends Immunol 27:176–182

    Article  PubMed  CAS  Google Scholar 

  • Schneider CH, De Weck AL (1965) A new chemical spect of penicillin allergy: the direct reaction of penicillin with epsilon-amino-groups. Nature 208:57–59

    Article  PubMed  CAS  Google Scholar 

  • Schnyder B, Mauri-Hellweg D, Zanni M, Bettens F, Pichler WJ (1997) Direct, MHC-dependent presentation of the drug sulfamethoxazole to human alphabeta T cell clones. J Clin Investig 100:136–141

    Article  PubMed  CAS  Google Scholar 

  • Schwartz RH (2003) T cell anergy. Annu Rev Immunol 21:305–334

    Article  PubMed  CAS  Google Scholar 

  • Sharpe AH (2009) Mechanisms of costimulation. Immunol Rev 229:5–11

    Article  PubMed  CAS  Google Scholar 

  • Tassaneeyakul W, Jantararoungtong T, Chen P, Lin PY, Tiamkao S, Khunarkornsiri U, Chucherd P, Konyoung P, Vannaprasaht S, Choonhakarn C, Pisuttimarn P, Sangviroon A (2009) Strong association between HLA-B*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet Genom 19:704–709

    Article  CAS  Google Scholar 

  • Thierse HJ, Gamerdinger K, Junkes C, Guerreiro N, Weltzien HU (2005) T cell receptor (TCR) interaction with haptens: metal ions as non-classical haptens. Toxicology 209:101–107

    Article  PubMed  CAS  Google Scholar 

  • Tikhonova AN, Van Laethem F, Hanada K, Lu J, Pobezinsky LA, Hong C, Guinter TI, Jeurling SK, Bernhardt G, Park JH, Yang JC, Sun PD, Singer A (2012) alphabeta T cell receptors that do not undergo major histocompatibility complex-specific thymic selection possess antibody-like recognition specificities. Immunity 36:79–91

    Article  PubMed  CAS  Google Scholar 

  • Van Laethem F, Sarafova SD, Park JH, Tai X, Pobezinsky L, Guinter TI, Adoro S, Adams A, Sharrow SO, Feigenbaum L, Singer A (2007) Deletion of CD4 and CD8 coreceptors permits generation of alphabetaT cells that recognize antigens independently of the MHC. Immunity 27:735–750

    Article  PubMed  Google Scholar 

  • Vollmer J, Fritz M, Dormoy A, Weltzien HU, Moulon C (1997) Dominance of the BV17 element in nickel-specific human T cell receptors relates to severity of contact sensitivity. Eur J Immunol 27:1865–1874

    Article  PubMed  CAS  Google Scholar 

  • Wei CY, Chung WH, Huang HW, Chen YT, Hung SI (2012) Direct interaction between HLA-B and carbamazepine activates T cells in patients with Stevens-Johnson syndrome. J Allergy Clin Immunol 129(1562–1569):e1565

    Google Scholar 

  • Weltzien HU, Moulon C, Martin S, Padovan E, Hartmann U, Kohler J (1996) T cell immune responses to haptens. Structural models for allergic and autoimmune reactions. Toxicology 107:141–151

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Gagnon E, Call ME, Schnell JR, Schwieters CD, Carman CV, Chou JJ, Wucherpfennig KW (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135:702–713

    Article  PubMed  CAS  Google Scholar 

  • Yang CW, Hung SI, Juo CG, Lin YP, Fang WH, Lu IH, Chen ST, Chen YT (2007) HLA-B*1502-bound peptides: implications for the pathogenesis of carbamazepine-induced Stevens-Johnson syndrome. J Allergy Clin Immunol 120:870–877

    Article  PubMed  CAS  Google Scholar 

  • Yin L, Crawford F, Marrack P, Kappler JW, Dai S (2012) T-cell receptor (TCR) interaction with peptides that mimic nickel offers insight into nickel contact allergy. Proc Natl Acad Sci U S A 109:18517–18522

    Article  PubMed  CAS  Google Scholar 

  • Zanni MP, von Greyerz S, Schnyder B, Brander KA, Frutig K, Hari Y, Valitutti S, Pichler WJ (1998) HLA-restricted, processing- and metabolism-independent pathway of drug recognition by human alpha beta T lymphocytes. J Clin Invest 102:1591–1598

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wilcox DE (2002) Thermodynamic and spectroscopic study of Cu(II) and Ni(II) binding to bovine serum albumin. J Biol Inorg Chem 7:327–337

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann C, Prevost-Blondel A, Blaser C, Pircher H (1999) Kinetics of the response of naive and memory CD8 T cells to antigen: similarities and differences. Eur J Immunol 29:284–290

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Stefan Martin for discussions on this topic. This work was funded by the EU through grant FP7/2007–2013 (SYBILLA) and the Deutsche-Forschungsgemeinschaft (DFG) through EXC294 (the Center for Biological Signalling Studies, BIOSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang W. A. Schamel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Louis-Dit-Sully, C., Schamel, W.W.A. (2014). Activation of the TCR Complex by Small Chemical Compounds. In: Martin, S. (eds) T Lymphocytes as Tools in Diagnostics and Immunotoxicology. Experientia Supplementum, vol 104. Springer, Basel. https://doi.org/10.1007/978-3-0348-0726-5_3

Download citation

Publish with us

Policies and ethics